| 研究生: |
張家禎 Chang, Chia-Chen |
|---|---|
| 論文名稱: |
新穎垂直式有機雙極性電晶體應用於高增益光感測之研究 A Novel Vertical Type Organic Bipolar Junction Transistor for High Gain Photo-Detecting Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 摻雜 、五環素 、醋酸鈉 、垂直式 |
| 外文關鍵詞: | XRD, doping, Pentacene |
| 相關次數: | 點閱:81 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係利用摻雜的有機材料五環素(Pentacene)薄膜首次研製垂直式雙極性電晶體應用在光感測上。利用SEM、AFM及XRD來檢視摻雜與無摻雜有機薄膜的表面結晶形態與程度;EDS和α-step分析表面成分與厚度;FTIR與PL來偵測鍵結位置及能隙大小,並藉由量測二極體特性來判定薄膜正負性及利用薄膜成長參數研究對光暗電流及增益值的影響。實驗結果顯示,加入鈉、碘的摻雜確實能使有機材料產生錯合物形成.使薄膜類似無機半導體具有正、負型整流之特性曲線。研製的垂直式有機異質接面雙極性電晶體 (PNP、NPN) 結構為Metal/EIL(HIL)/Doped-PEN/EIL(HIL)/Doped-PEN/c-Si/Metal。在NPN電晶體,以醯銨鈉掺雜作為N層的時,常溫及Vbe=30V偏壓下,在不照光時在電流增益為β=3.7,但照光後之增益變成β=34;而以醋酸鈉掺雜作為N層時,在不照光之電流增益達β=4.46,照光後電流增益改變為β=75。吾人認為電流益的不同應與摻雜材料有關,而光電流增益則與增加的電子電洞對有關並提出一模式來解釋
In this thesis, for the first time, we developed a novel vertical type organic bipolar junction transistor for high gain photo-detecting applications by modulating the Pentacene organic thin films’ conductivity and carrier type with NaNH2 and CH3COONa for N type dopant. We used SEM, AFM, and XDR to inspect morphology and crystallization of the organic films; EDS and α-step to analyze the surface component and film thickness. In addition, FTIR and PL were employed for bonding location and band gap, respectively. The Schottky and ohmic characteristics of the organic/Si heterojunctions (pn and np) were examined by I-V measuring. Besides, the vertical type organic structure Metal/EIL(HIL)/doped- Pentacene/EIL(HIL)/ doped-Pentacene/Si-substrate/Metal hetero-junction bipolar phototransistors(PNP and NPN) were prepared and their DC I-V curves with and without light irradiation were also measured. Without light irradiation, the current gains of the NPN bipolar transistors were 3.7, and 4.46 with NaNH2, and CH3COONa as dopant, respectively, while under light illumination, the β were raised to 34, and 75, respectively. We suspect the dark current gain is related to dopant, while the photo current gain is dominated by the extra electron hole pairs after light illumination in both Si substrate and organic thin films. We developed a model to interpret these phenomena.
[1] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, vol.363, pp.33-36 (2000).
[2] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett. vol.83, pp.1038-1040 (2003).
[3] 陳壽安,物理雙月刊, 23(2),312,2001.
[4] H. Shirakawa , C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger,E. J. Louis, S. C. Gau and A. G. MacDiarmid, “Limits for Metallic Conductivity in Conducting Polymers” Phys. Rev.Lett. 39,1098, (1997).
[5] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processableregioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett. vol.69, pp.4108-4110 (1996).
[6] Yanbo Jin, Zhenlin Rang, Marshall I. Nathan, P. Paul Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett. vol.85, pp.4406-4408 (2004).
[7] D. J. Gundlach, Y. Y. Lin,T. N. Jackson, S. F. Nelson, an D. G. Schlom , “Solvent-induced phase transition in thermally evaporated pentacene films”, Appl. Phys. Lett. vol.74, pp.3302 (1999).
[8] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw , ” Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, vol.401, pp.685, (1999).
[9] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment”, Japanese Journal of Applied Physics, Vol.46, pp.2753-2757 (2007).
[10] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An Iodine-doped polymer light-emitting diode”, Appl. Phys. Lett. Vol.71, pp.2415-2417 (1997).
[11] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger, “Polyacetylene, (Ch)x: N-type and p-type doping and compensation”, Appl. Phys. Lett. Vol.33, PP.18-20 (1978).
[12] 陳金鑫,黃孝文,”有機電激發光材料與元件”,五南圖書出版公司, (2006).
[13] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene Organic Thin-Film Transistors – molecular Ordering and Mobility” , IEEE Electron. Device Lett. Vol.18, NO.3,PP.87-89 (1997).
[14] S. S. Kim, Y. S. Choi, Kibum Kim, J. H. Kim, and Seongil Im, “Fabrication of p-pentacene/n-Si organic photodiodes and Characterization of their photoelectric properties”, Appl. Phys. Lett. vol.82, pp.639-641, (2003).
[15] Jiyoul Lee, S. S. Kim, Kibum Kim, Jae Hoon Kim, and Seongil Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett. vol.84, pp.1701-1703, (2004).
[16] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. vol.48, pp.183-185, (1986).
[17] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures”, Thin Solid Films, vol.451-452, pp.515-517, (2004).
[18] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si”, Appl. Phys. Lett. vol.80, pp.2872-2874, (2002).
[19] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
[20] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981 ).
[21] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
[22] A. J. Champbell and D. D. C. Bradley, J Laubender, M Sokolowski, “Thermally activated injection limited conduction in single layer N,N-diphenyl-N,N-bis(3-methylphenyl)1-1-biphenyl-4,4-diamine light emitting diodes ”, J. Appl. Phys. 86, p.5004(1999).
[23] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and J. P. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes”, Appl. Phys. Lett. 72, p.1863 (1998).
[24] P. S. Davids, I. H. Campell, and D. L. Smith, “Device model for single carrier organic diodes”, J. Appl. Phys. 82, p.6319 (1997).
[25] R. H. Fowler and L. Nordheim, “Electron transmission in intense electric fields”, Proc. R. Soc. London Ser. A 119, p.173 (1928).
[26] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes”, J. Appl. Phys. 77, p.694 (1995).
[27] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bässler, “Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends” , Synth. Met. 68, p.263 (1995).
[28] P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, “Charge i njection in organic light‐emitting diodes: Tunneling into low mobility materials”, Appl. Phys. Lett. 69, p.2270 (1996).
[29] Yulong Shen, Matthias W. Klein , Daniel B. Jacobs, J. Campbell Scott , and George G. Malliaras, ”Mobility-Dependent Charge Injection into an Organic Semiconductor”, Phys. Rev. Lett. 86, 3867 - 3870 (2001).
[30] PS Davids, SM Kogan, ID Parker, DL Smith,“ Charge injection in organic light‐emitting diodes: Tunneling into low mobility materials ” , Appl. Phys. Lett. 69, 2270 (1996).
[31] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly (phenylene vinylene) light emitting diodes ” , J. Appl. Phys. 82, p.6326 (1997).
[32] D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, “ Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio”, J. Appl. Phys. 87, 312 (2000).
[33] L Bozano, SA Carter, JC Scott, GG Malliaras, ”Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes”, Appl. Phys. Lett. 74, 1132 (1999).
[34] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, “Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes“, Appl. Phys. Lett. 77, p.1852 (2000).
[35] P. W. M. Blom and M. C. J. M. Vissenberg , ”Charge transport in poly (p-phenylene vinylene) light-emitting diodes” , Mat. Sci. & Eng. 27, p.53 (2000).
[36] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, p.1621 (2001).
[37] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics”, Appl. Phys. Lett. 74, p.2809 (1999).
[38] K. Unger, Phys. Stat. Sol. 2, p.1279 (1962).
[39] J. G. Simmons and M. C. Tam, ” Thermoreflectance Spectra and Energy Band Structure ”, Phys. Rev. B 7, p.3706 (1973).
[40] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, “Bulk limited conduction in electroluminescent polymer devices “, J. Appl. Phys. 84, p.6737 (1998).
[41] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, “Extrinsic photoconductivity in poly (3-dodecylthiophene) sandwich cells”, Phys. Rev. B 61, p.2151 (2000).
[42] C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E.Thompson, S. R. Forrest, and R. A. Register, “Poly (p‐phenylene vinylene)/tris (8‐hydroxy) quinoline aluminum heterostructure light emitting diode”, Appl. Phys. Lett.66, p.653 (1995).
[43] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P.Monkman, and M. C. Petty, “ The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting device ”, J. Phys. D: Appl. Phys. 33, p.1029 (2000).
[44] Y.Qiu, Y. Gao, L. Wang, , D Zhang , “Efficient light emitting diodes with Teflon buffer layer “, Synth Met. 130, p.235 (2002).
[45] Z. B. Deng, X. M. Ding, S.T. Lee, WA Gambling ,”Enhanced brightness and efficiency in organic electroluminescent devices using SiO buffer layers “, Appl. Phys. Lett.74, p.2222(1999).
[46] C. H. Chen, C. W. Tang, J. Shi,” Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence”, Thin Solid Films, 363, p.327 (2000).
[47] S.Naga,M. Tamekawa,T. Terashita, H. Okada, H. Anada, H. Onnagawa, Synth.Met. 91,129(1997).
[48] T. Ishida,H. Kobayashi, Y. Nakato, ”Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements”, J.Appl. Phys. 73,4344(1993).
[49] S. K. So, W. K.Choi, C.H. Cheng, L. M.Leung, C.F.Kwong,” Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices”, Appl. Phys. A,68,447(1999).
[50] S. A. VanSlyke, C.H. Chen, C.W.Tang, ”Organic electroluminescent devices with improved stability“, Appl. Phys. Lett. 69, 2160 (1996).
[51] T. Wakimoto, Y, Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, “Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials”, IEEE Trans. Electron. Devices , vol. 44, NO. 8, PP.1245-1248, (1997).
[52] C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition”, Appl. Phys. Lett. vol.85, PP.4774-4776,(2001).
[53] J. Kido, T. Matsumoto , “Bright organic electroluminescent devices having a metal-doped electron-injecting layer”, Appl. Phys. Lett.vol.73, PP.2866-2868,(1998).
[54] J. M. Shannon, “A majority-carrier camel diode”, Appl. Phys. Lett. vol.35, pp.63-65, (1979).