簡易檢索 / 詳目顯示

研究生: 余瑞斌
Yu, Jui-Ping
論文名稱: 雙黑洞演化與數值相對論:程式建構與應用
Binary Black Holes Evolution and Numerical Relativity: Code Building and Some Applications
指導教授: 游輝樟
Yo, Hwei-Jang
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 141
中文關鍵詞: 數值相對論重力波雙黑洞穿刺法網格細化重力位勢極限自旋
外文關鍵詞: numerical relativity, gravitational wave, binary black holes, puncture, mesh refinement, gravitational potential, extremal spin
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們報告我們發展關於數值相對論的程式,該程式建立在BSSN數學表述,移動式穿刺法和調適性網格細化的應用下。單一黑洞與雙黑洞系統的模擬結果證明此程式是可信賴的,並且可以應用研究在較真實的天文方案與數值相對論上。

    在我們的宇宙裡,雙黑洞系統總是座落在由超重黑洞為中心主體的星系的位勢上。就我們所知,所有先前的雙黑洞系統的研究只考慮為孤立系統,而忽略環境背景的影響。我們感興趣這樣的影響,進而提出一微擾的方案來研究這樣的重力位勢對雙黑洞演化的影響,特別是在重力波的輻射上。雙黑洞本身可以被考慮頭對頭碰撞與互繞融合兩種,關於對超重黑洞考慮自由掉落與圓形軌道盤旋兩種極限。組合出四種劇本,我們模擬這四種劇本來研究重力位勢的背景對雙黑洞演化的影響。

    高速自旋的黑洞可能存在一些星系的中心,然而模擬這樣的系統是有困難的。我們提出一新的座標來改寫Kerr度規在穿刺法的形式下。不像先前的一些座標,在這座標下視界半徑是有限,甚至是無關自旋大小的常數,即便在極限的自旋限制時。我們使用三個參數來控制座標的扭曲,透過合適的參數選取我們可以建構一個好的初始資料給一個極限自旋的黑洞。然而我們需要更細部地調整我們的程式來精準地模擬這樣極限自旋的黑洞。

    In this thesis we report on our code for numerical relativity, in which it is based on the Baumgarte-Shapiro-Shibata-Nakamura(BSSN) formulation, and the moving puncture method is applied, and an adaptive/fixed mesh refinement(AMR) is implemented. The simulation results including a single and a binary black hole system demonstrate that this code is reliable and ready to be used in the study of more realistic astrophysical scenarios and of numerical relativity.

    In our universe, binary black hole systems are always located in the potential of some super-massive black hole hosted in the center of galaxy. To our knowledge, all binary black hole systems have been treated in previous studies as isolated systems by ignoring the effects of the environment in which they are located. We are interesting in the effects, and propose a perturbational scheme for investigating the effects of these background potentials on the evolution of a binary black holes, especially the gravitational radiation which is of interest for gravitational wave detection. The binary black hole systems we considered include head-on colliding and inspiralling binaries. With respect to the super-massive black hole, the free-falling and circular orbiting case are considered as two limit cases of realistic systems.

    High-spinning black holes could exist at the center of some galaxies; then there are difficulties in numerically simulating it. We propose a new radial coordinate to re-write the Kerr metric in a punctured form. Unlike some coordinates introduced previously, the horizon radius can be finite, even being a constant which is independent of the size of the spin, in our new coordinate with the extreme Kerr limit a/M→1. There are three parameters in our coordinate controlling the distortion of the coordinate. Through a suitable choice, we can construct good initial data with the extreme Kerr limit. However, we need to fine tune our code to accurately simulate the extremal Kerr black hole.

    Abstract i Acknowledgements ii List of Figures v List of Tables vii Abbreviations viii Chapter 1 Introduction 1 1.1 Review of Gravitational Waves........................ 2 1.2 Structure of this Thesis............................ 6 Chapter 2 Formalism 8 2.1 Einstein Field Equations............................ 8 2.2 The ADM Formulation............................. 10 2.3 The BSSN Formulation............................ 12 2.3.1 Equation Adjustments......................... 15 Chapter 3 The Treatment of Singularities in Numeric 17 3.1 The Excision Method............................. 17 3.2 The Puncture Method............................. 19 Chapter 4 Numerical Techniques 22 4.1 The Finite Difference Method......................... 23 4.2 The Mesh Refinement Method........................ 26 4.3 The Interpolation Method........................... 28 4.4 Numerical Dissipation and Modifications to the Formulation........ 31 Chapter 5 Initial Data 33 5.1 The Puncture Method............................. 34 5.2 The Excision Method............................. 38 Chapter 6 Simulation Results of the Black Hole System 41 6.1 Introduction................................... 41 6.2 A Single Static Black Hole........................... 42 6.3 A Single Boosted/Spinning Black Hole.................... 46 6.3.1 A Single Boosted Black Hole..................... 47 6.3.2 A Boosted Black Hole with Spin................... 50 6.3.3 Rapidly-rotating Black Hole...................... 52 6.4 Head-on Collision of a Binary......................... 53 6.5 Inspiraling of a Binary............................. 60 6.6 Binary with a Massless Scalar Field..................... 64 6.7 Discussion.................................... 66 Chapter 7 Perturbational Treatment of the Gravitational Potential Effect on a Binary Black Hole 69 7.1 Introduction................................... 69 7.2 Initial Data................................... 70 7.3 Boundary Conditions.............................. 72 7.4 Head-on Collision of a Binary......................... 73 7.4.1 Free-Falling............................... 73 7.4.2 Circular Orbiting............................ 79 7.5 Inspiraling of a Binary............................. 83 7.5.1 Free-Falling............................... 83 7.5.2 Circular Orbiting............................ 88 7.6 Discussion.................................... 91 Chapter 8 The Reconstruction of Kerr Spacetime 94 8.1 Introduction................................... 94 8.2 New Coordinate................................ 97 8.2.1 Horizon Radius Fixing......................... 98 8.2.2 The Choice of the Parameters..................... 100 8.3 Numerical Simulations............................. 102 8.3.1 A Low Spinning Black Hole...................... 103 8.3.2 A High Spinning Black Hole...................... 104 8.3.3 Higher Spinning Than the Bowen-York Limit............ 105 8.3.4 Spinning Near the Extremal Kerr Limit............... 106 8.3.5 Choosing Parameter for Our New Coordinate............ 109 8.4 Discussion.................................... 113 Chapter 9 Conclusion 115 A Gravitational Waveforms with the Newman-Penrose Method 117 B Apparent Horizon Finder 121 C Dynamical Shift Condition 123 D Scalar Field in a Curved Spacetime 125 Bibliography 127

    [1] Kip. S. Thorne. Gravitational radiation - a new window onto the universe. arXiv:gr-qc/9704042, 1997.
    [2] The LIGO Scientific Collaboration: B. Abbott, et al.. LIGO: the laser interferometer gravitational-wave observatory. Reports on Progress in Physics, 72(7):076901, 2009.
    [3] LIGO. http://www.ligo.caltech.edu/.
    [4] GEO600. http://www.geo600.org/.
    [5] Virgo. http://www.virgo.infn.it/.
    [6] TAMA. http://tamago.mtk.nao.ac.jp/.
    [7] J. Abadie et al. (The LIGO Scientific Collaboration and The Virgo Collaboration). All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D, 81(10):102001, 2010.
    [8] Peter Fritschel. Second generation instruments for the laser interferometer gravitational wave observatory (LIGO). volume 4856, page 282. SPIE, 2003.
    [9] Karsten Danzmann and Albrecht Rudiger. LISA technology-concept, status, prospects. Classical and Quantum Gravity, 20(10):S1, 2003.
    [10] LISA. http://lisa.nasa.gov/.
    [11] C. Cutler and Kip S. Thorne. An overview of gravitational-wave sources. arXiv:grqc/0204090, 2002.
    [12] Curt Cutler and Eanna E. Flanagan. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D, 49(6):2658, 1994.
    [13] Luc Blanchet. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Reviews in Relativity, 9(4), 2006.
    [14] Misao Sasaki and Hideyuki Tagoshi. Analytic black hole perturbation approach to gravitational radiation. Living Reviews in Relativity, 6(6), 2003.
    [15] Frans Pretorius. Evolution of binary black-hole spacetimes. Phys. Rev. Lett., 95(12):121101, 2005.
    [16] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter. Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett., 96(11):111102, 2006.
    [17] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower. Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett., 96(11):111101, 2006.
    [18] Zhoujian Cao, Hwei-Jang Yo, and Jui-Ping Yu. Reinvestigation of moving punctured black holes with a new code. Phys. Rev. D, 78(12):124011, 2008.
    [19] Bernd Brugmann, Jose A. Gonzalez, Mark Hannam, Sascha Husa, Ulrich Sperhake, and Wolfgang Tichy. Calibration of moving puncture simulations. Phys. Rev. D, 77(2):024027, 2008.
    [20] Ulrich Sperhake. Binary black-hole evolutions of excision and puncture data. Phys. Rev. D, 76(10):104015, 2007.
    [21] Mark A. Scheel, Harald P. Pfeiffer, Lee Lindblom, Lawrence E. Kidder, Oliver Rinne, and Saul A. Teukolsky. Solving Einstein's equations with dual coordinate frames. Phys. Rev. D, 74(10):104006, 2006.
    [22] Breno Imbiriba, John Baker, Dae-Il Choi, Joan Centrella, David R. Fiske, J. David Brown, James R. van Meter, and Kevin Olson. Evolving a puncture black hole with fixed mesh refinement. Phys. Rev. D, 70(12):124025, 2004.
    [23] Birjoo Vaishnav, Ian Hinder, Frank Herrmann, and Deirdre Shoemaker. Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D, 76(8):084020, 2007.
    [24] Denis Pollney, Christian Reisswig, Luciano Rezzolla, Bela Szilagyi, Marcus Ansorg, Barrett Deris, Peter Diener, Ernst Nils Dorband, Michael Koppitz, Alessandro Nagar, and Erik Schnetter. Recoil velocities from equal-mass binary black-hole mergers: A systematic investigation of spin-orbit aligned configurations. Phys. Rev. D, 76(12):124002, 2007.
    [25] Joshua A. Faber, ThomasW. Baumgarte, Zachariah B. Etienne, Stuart L. Shapiro, and Keisuke Taniguchi. Relativistic hydrodynamics in the presence of puncture black holes. Phys. Rev. D, 76(10):104021, 2007.
    [26] Tetsuro Yamamoto, Masaru Shibata, and Keisuke Taniguchi. Simulating coalescing compact binaries by a new code (SACRA). Phys. Rev. D, 78(6):064054, 2008.
    [27] Steven L. Liebling. Singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement. Phys. Rev. D, 66(4):041703, 2002.
    [28] Mark Hannam et al.. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Phys. Rev. D, 79(8):084025, 2009.
    [29] Benjamin Aylott et al.. Testing gravitational-wave searches with numerical relativity waveforms: results from the first numerical INJection analysis (NINJA) project. Classical and Quantum Gravity, 26(16):165008, 2009.
    [30] Mitchell C. Begelman, Roger D. Blandford, and Martin J. Rees. Theory of extragalactic radio sources. Rev. Mod. Phys., 56(2):255, 1984.
    [31] Tsvi Piran. The physics of gamma-ray bursts. Rev. Mod. Phys., 76(4):1143, 2005.
    [32] Steven A. Balbus and John F. Hawley. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys., 70(1):1, 1998.
    [33] Steven A. Balbus and John F. Hawley. The magnetic nature of disk accretion onto black holes. Nature, 441:953, 2006.
    [34] Jose A. Gonzalez, Ulrich Sperhake, Bernd Brugmann, Mark Hannam, and Sascha Husa. Maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett., 98(9):091101, 2007.
    [35] Manuela Campanelli, Carlos O. Lousto, Yosef Zlochower, and David Merritt. Maximum gravitational recoil. Phys. Rev. Lett., 98(23):231102, 2007.
    [36] R. Arnowitt, S. Deser, and C.W. Misner. Gravition: An Introduction to Curren Research. Wiley, New York, 1962.
    [37] Masaru Shibata and Takashi Nakamura. Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D, 52:5428, 1995.
    [38] Thomas W. Baumgarte and Stuart L. Shapiro. Numerical integration of Einstein's field equations. Phys. Rev. D, 59:024007, 1998.
    [39] Helmut Friedrich. Conformal Einstein Evolution, volume 604 of Lecture Notes in Physics, pages 1-50. Springer Berlin/Heidelberg, 2002.
    [40] Jorg Frauendiener. Some Aspects of the Numerical Treatment of the Conformal Field Equations, volume 604 of Lecture Notes in Physics, pages 261-282. Springer Berlin/Heidelberg, 2002.
    [41] Sascha Husa. Problems and Successes in the Numerical Approach to the Conformal Field Equations, volume 604 of Lecture Notes in Physics, pages 239-259. Springer Berlin/Heidelberg, 2002.
    [42] Jeffrey Winicour. Characteristic evolution and matching. Living Reviews in Relativity, 8(10), 2005.
    [43] Nigel T. Bishop, Roberto Gomez, Luis Lehner, and Jeffrey Winicour. Cauchy-characteristic extraction in numerical relativity. Phys. Rev. D, 54:6153, 1996.
    [44] R. Gomez, R. L. Marsa, and J. Winicour. Black hole excision with matching. Phys. Rev. D, 56:6310, 1997.
    [45] Pedro Marronetti, Wolfgang Tichy, Bernd Brugmann, Jose Gonzalez, and Ulrich Sperhake. High-spin binary black hole mergers. Phys. Rev. D, 77(6):064010, 2008.
    [46] Edward Seidel and Wai-Mo Suen. Towards a singularity-proof scheme in numerical relativity. Phys. Rev. Lett., 69:1845, 1992.
    [47] Peter Anninos, Greg Daues, Joan Masso, Edward Seidel, and Wai-Mo Suen. Horizon boundary condition for black hole spacetimes. Phys. Rev. D, 51:5562, 1995.
    [48] J. Thornburg. Coordinates and boundary conditions for the general relativistic initial data problem. Classical and Quantum Gravity, 4(5):1119, 1987.
    [49] Hwei-Jang Yo, Thomas W. Baumgarte, and Stuart L. Shapiro. Numerical testbed for singularity excision in moving black hole spacetimes. Phys. Rev. D, 64(12):124011, 2001.
    [50] Miguel Alcubierre and Bernd Brugmann. Simple excision of a black hole in 3+1 numerical relativity. Phys. Rev. D, 63:104006, 2001.
    [51] Miguel Alcubierre, Bernd Brugmann, Denis Pollney, Edward Seidel, and Ryoji Takahashi. Black hole excision for dynamic black holes. Phys. Rev. D, 64:061501, 2001.
    [52] Dieter R. Brill and Richard W. Lindquist. Interaction energy in geometrostatics. Phys. Rev., 131(1):471, 1963.
    [53] Charles W. Misner and John A. Wheeler. Classical physics as geometry. Annals of Physics, 2(6):525, 1957.
    [54] Steven Brandt and Bernd Br‥ugmann. A simple construction of initial data for multiple black holes. Phys. Rev. Lett., 78(19):3606, 1997.
    [55] Miguel Alcubierre, Bernd Br‥ugmann, Peter Diener, Michael Koppitz, Denis Pollney, Edward Seidel, and Ryoji Takahashi. Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D, 67:084023, 2003.
    [56] James R. van Meter, John G. Baker, Michael Koppitz, and Dae-Il Choi. How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D, 73(12):124011, 2006.
    [57] Carsten Gundlach and Jose M. Martin-Garcia. Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions. Phys. Rev. D, 74(2):024016, 2006.
    [58] Gioel Calabrese. Finite differencing second order systems describing black hole spacetimes. Phys. Rev. D, 71(2):027501, 2005.
    [59] Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. Lousto. Accurate black hole evolutions by fourth-order numerical relativity. Phys. Rev. D, 72(2):024021, 2005.
    [60] Sascha Husa, Jose A Gonzalez, Mark Hannam, Bernd Brugmann, and Ulrich Sperhake. Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing. Classical and Quantum Gravity, 25(10):105006, 2008.
    [61] Carlos O. Lousto and Yosef Zlochower. Foundations of multiple-black-hole evolutions. Phys. Rev. D, 77(2):024034, 2008.
    [62] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc., 43:50, 1947.
    [63] Saul A. Teukolsky. Stability of the iterated Crank-Nicholson method in numerical relativity. Phys. Rev. D, 61(8):087501, 2000.
    [64] William Press. Numerical Recipes in Fortran 90. Cambridge University Press, Cambridge, 1996.
    [65] Miguel Alcubierre et al.. Towards standard testbeds for numerical relativity. Classical and Quantum Gravity, 21(2):589, 2004.
    [66] M C Babiuc, S Husa, D Alic, I Hinder, C Lechner, E Schnetter, B Szilagyi, Y Zlochower, N Dorband, D Pollney, and J Winicour. Implementation of standard testbeds for numerical relativity. Classical and Quantum Gravity, 25(12):125012, 2008.
    [67] G. Calabrese, I. Hinder, and S. Husa. Numerical stability for finite difference approximations of Einstein's equations. Journal of Computational Physics, 218(2):607, 2006.
    [68] Gioel Calabrese, Jorge Pullin, Olivier Sarbach, and Manuel Tiglio. Convergence and stability in numerical relativity. Phys. Rev. D, 66(4):041501, 2002.
    [69] Kenta Kiuchi and Hisa-aki Shinkai. Numerical experiments of adjusted Baumgarte-Shapiro-Shibata-Nakamura systems for controlling constraint violations. Phys. Rev. D, 77(4):044010, 2008.
    [70] Gioel Calabrese. A remedy for constraint growth in numerical relativity: the Maxwell case. Classical and Quantum Gravity, 21(17):4025, 2004.
    [71] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484, 1984.
    [72] Hwei-Jang Yo, ThomasW. Baumgarte, and Stuart L. Shapiro. Improved numerical stability of stationary black hole evolution calculations. Phys. Rev. D, 66:084026, 2002.
    [73] Greg Cook. Initial data for numerical relativity. Living Reviews in Relativity, 3(5), 2000.
    [74] Harald Paul Pfeiffer. Initial data for black hole evolutions. PhD thesis, Cornell University, 2003.
    [75] A. Einstein and N. Rosen. The particle problem in the general theory of relativity. Phys. Rev., 48(1):73, 1935.
    [76] Jerey M. Bowen and James W. York. Time-asymmetric initial data for black holes and black-hole collisions. Phys. Rev. D, 21(8):2047, 1980.
    [77] Georey Lovelace, Robert Owen, Harald P. Pfeiffer, and Tony Chu. Binary-black-hole initial data with nearly extremal spins. Phys. Rev. D, 78:084017, 2008.
    [78] Lorene. http://www.lorene.obspm.fr/.
    [79] Philippe Grandclement and Jerome Novak. Spectral methods for numerical relativity. Living Reviews in Relativity, 12(1), 2009.
    [80] Gregory B. Cook and Harald P. Pfeiffer. Excision boundary conditions for black-hole initial data. Phys. Rev. D, 70(10):104016, 2004.
    [81] Philippe Grandclement, Eric Gourgoulhon, and Silvano Bonazzola. Binary black holes in circular orbits. II. Numerical methods and firrst results. Phys. Rev. D, 65(4):044021, 2002.
    [82] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter. Binary black hole merger dynamics and waveforms. Phys. Rev. D, 73(10):104002, 2006.
    [83] Alessandra Buonanno, Gregory B. Cook, and Frans Pretorius. Inspiral, merger, and ring-down of equal-mass black-hole binaries. Phys. Rev. D, 75(12):124018, 2007.
    [84] Pablo Laguna. Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture. Phys. Rev. D, 69(10):104020, 2004.
    [85] Mark D. Hannam, Charles R. Evans, Gregory B. Cook, and Thomas W. Baumgarte. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium? Phys. Rev. D, 68(6):064003, 2003.
    [86] Mark D. Hannam. Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Phys. Rev. D, 72(4):044025, 2005.
    [87] Quasi equilibrium binary black hole initial data. http://www.black-holes.org/researchers3.html.
    [88] A. Arbona, C. Bona, J. Masso, and J. Stela. Robust evolution system for numerical relativity. Phys. Rev. D, 60(10):104014, 1999.
    [89] David Brown, Olivier Sarbach, Erik Schnetter, Manuel Tiglio, Peter Diener, Ian Hawke, and Denis Pollney. Excision without excision. Phys. Rev. D, 76(8):081503, 2007.
    [90] Zachariah B. Etienne, Joshua A. Faber, Yuk Tung Liu, Stuart L. Shapiro, and Thomas W. Baumgarte. Filling the holes: Evolving excised binary black hole initial data with puncture techniques. Phys. Rev. D, 76(10):101503, 2007.
    [91] Ulrich Sperhake, Vitor Cardoso, Frans Pretorius, Emanuele Berti, and Jose A. Gonzalez. High-energy collision of two black holes. Phys. Rev. Lett., 101(16):161101, 2008.
    [92] S.W. Hawking. Gravitational radiation from colliding black holes. Phys. Rev. Lett., 26(21):1344, 1971.
    [93] Douglas M. Eardley and Steven B. Giddings. Classical black hole production in high-energy collisions. Phys. Rev. D, 66(4):044011, 2002.
    [94] Mark D. Hannam, Sascha Husa, and Niall O Murchadha. Bowen-York trumpet data and black hole simulations. Physical Review D, 80(12):124007, 2009.
    [95] Sergio Dain, Carlos O. Lousto, and Yosef Zlochower. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries. Physical Review D, 78(2):024039, 2008.
    [96] Sergio Dain, Carlos O. Lousto, and Ryoji Takahashi. New conformally flat initial data for spinning black holes. Phys. Rev. D, 65(10):104038, 2002.
    [97] John G Baker, Manuela Campanelli, Frans Pretorius, and Yosef Zlochower. Comparisons of binary black hole merger waveforms. Classical and Quantum Gravity, 24(12):S25, 2007.
    [98] A. Buonanno and T. Damour. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D, 59(8):084006, 1999.
    [99] Thibault Damour, Bala R. Iyer, and B. S. Sathyaprakash. Comparison of search templates for gravitational waves from binary inspiral. Physical Review D, 63(4):044023, 2001.
    [100] Thibault Damour, Bala R. Iyer, and B. S. Sathyaprakash. Improved filters for gravitational waves from inspiraling compact binaries. Physical Review D, 57(2):885, 1998.
    [101] Laszlo Arpad Gergely and Peter L. Biermann. The spin-flip phenomenon in super-massive black hole binary mergers. The Astrophysical Journal, 697(2):1621, 2009.
    [102] Jose A. Gonzalez, Ulrich Sperhake, and Bernd Brugmann. Black-hole binary simulations: The mass ratio 10 : 1. Phys. Rev. D, 79(12):124006, 2009.
    [103] Mark Hannam, Sascha Husa, Denis Pollney, Bernd Brugmann, and Niall O Murchadha. Geometry and regularity of moving punctures. Phys. Rev. Lett., 99(24):241102, 2007.
    [104] T W Baumgarte, Z B Etienne, Y T Liu, K Matera, N O Murchadha, S L Shapiro, and K Taniguchi. Equilibrium initial data for moving puncture simulations: the stationary 1+log slicing. Classical and Quantum Gravity, 26(8):085007, 2009.
    [105] Gregory B. Cook. Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes. Phys. Rev. D, 50 (8):5025, 1994.
    [106] David R. Fiske, John G. Baker, James R. van Meter, Dae-Il Choi, and Joan M. Centrella. Wave zone extraction of gravitational radiation in three-dimensional numerical relativity. Phys. Rev. D, 71(10):104036, 2005.
    [107] Matthew J. Benacquista. Relativistic binaries in globular clusters. Living Reviews in Relativity, 9(2), 2006.
    [108] Robert Antonucci. Unified models for active galactic nuclei and quasars. Annua Reviews in Astronomy and Astrophysics, 31(1):473, 1993.
    [109] Emanuele Berti, Vitor Cardoso, Jose A. Gonzalez, Ulrich Sperhake, Mark Hannam Sascha Husa, and Bernd Brugmann. Inspiral, merger, and ringdown of unequa mass black hole binaries: A multipolar analysis. Phys. Rev. D, 76(6):064034, 2007.
    [110] John G. Baker, William D. Boggs, Joan Centrella, Bernard J. Kelly, Sean T. McWilliams, and James R. van Meter. Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics. Phys. Rev. D, 78(4):044046, 2008
    [111] Yuji Torigoe, Keisuke Hattori, and Hideki Asada. Gravitational wave forms for two- and three-body gravitating systems. Phys. Rev. Lett., 102(25):251101, 2009.
    [112] P. C. Peters. Gravitational radiation and the motion of two point masses. Phys. Rev., 136(4B):B1224, 1964.
    [113] Craig W. Lincoln and Clifford M. Will. Coalescing binary systems of compact objects to (post)5/2-Newtonian order: Late-time evolution and gravitational-radiation emission. Phys. Rev. D, 42(4):1123, 1990.
    [114] Manuela Campanelli, Miranda Dettwyler, Mark Hannam, and Carlos O. Lousto. Relativistic three-body effects in black hole coalescence. Phys. Rev. D, 74(8):087503, 2006.
    [115] Wolfgang Tichy and Bernd Brugmann. Quasiequilibrium binary black hole sequences for puncture data derived from helical killing vector conditions. Phys. Rev. D, 69(2):024006, 2004.
    [116] Yoshihide Kozai. Secular perturbations of asteroids with high inclination and eccentricity. Astronomical Journal, 67:591, 1962.
    [117] Linqing Wen. On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters. The Astrophysical Journal, 598(1):419, 2003.
    [118] Berti Emanuele and Volonteri Marta. Cosmological black hole spin evolution by mergers and accretion. The Astrophysical Journal, 684(2):822, 2008.
    [119] Volonteri Marta et al.. The distribution and cosmic evolution of massive black hole spins. The Astrophysical Journal, 620(1):69, 2005.
    [120] Kip S. Thorne. Disk-accretion onto a black hole. II. Evolution of the hole. Astrophysical Journal, 191:507, 1974.
    [121] Jian-Min Wang, Yan-Mei Chen, Luis C. Ho, and Ross J. McLure. Evidence for rapidly spinning black holes in quasars. The Astrophysical Journal Letters, 642(2):L111, 2006.
    [122] Matthew Middleton, Chris Done, Marek Gierlinski, and Shane W. Davis. Black hole spin in GRS 1915+105. Monthly Notices of the Royal Astronomical Society, 373(3):1004, 2006.
    [123] J. M. Miller, C. S. Reynolds, A. C. Fabian, G. Miniutti, and L. C. Gallo. Stellar mass black hole spin constraints from disk reflection and continuum modeling. The Astrophysical Journal, 697(1):900, 2009.
    [124] Lijun Gou et al.. A determination of the spin of the black hole primary in LMC x-1. The Astrophysical Journal, 701(2):1076, 2009.
    [125] Yuk Tung Liu, Zachariah B. Etienne, and Stuart L. Shapiro. Evolution of near extremal-spin black holes using the moving puncture technique. Phys. Rev. D, 80(12):121503, 2009.
    [126] Steven R. Brandt and Edward Seidel. Evolution of distorted rotating black holes. III. Initial data. Phys. Rev. D, 54:1403, 1996.
    [127] Steven R. Brandt and Edward Seidel. Evolution of distorted rotating black holes. I. Methods and tests. Phys. Rev. D, 52:856, 1995.
    [128] Matthew Choptuik and W. G. Unruh. An introduction to the multi-grid method for numerical relativists. General Relativity and Gravitation, 18(8):813, 1986.
    [129] J.W. York Jr. and T. Piran. in Spacetime and Geometry: The Alfred Schild Lectures, page 147. University of Texas Press, Austin, TX, 1982.
    [130] Mark Hannam, Sascha Husa, Frank Ohme, Bernd Brugmann, and Niall O Murchadha. Wormholes and trumpets: Schwarzschild spacetime for the movingpuncture generation. Phys. Rev. D, 78(6):064020, 2008.
    [131] Tullio Regge and John A. Wheeler. Stability of a Schwarzschild singularity. Phys. Rev., 108:1063, 1957.
    [132] Frank J. Zerilli. Effective potential for even-parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett., 24(13):737, 1970.
    [133] Vincent Moncrief. Gravitational perturbations of spherically symmetric systems. II. Perfect fluid interiors. Annals of Physics, 88(2):343, 1974.
    [134] Ezra Newman and Roger Penrose. An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3(3):566, 1962.
    [135] Kip S. Thorne. Multipole expansions of gravitational radiation. Rev. Mod. Phys., 52(2):299, 1980.
    [136] Milton Ruiz, Miguel Alcubierre, Dario Nunez, and Ryoji Takahashi. Multiple expansions for energy and momenta carried by gravitational waves. General Relativity and Gravitation, 40(8):1705, 2008.
    [137] Masaru Shibata. Apparent horizon finder for a special family of spacetimes in 3D numerical relativity. Phys. Rev. D, 55(4):2002, 1997.
    [138] Thornburg Jonathan. A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity. Classical and Quantum Gravity, 21(2):743, 2004.
    [139] Cactus. http://www.cactuscode.org/.
    [140] Olaf Dreyer, Badri Krishnan, Deirdre Shoemaker, and Erik Schnetter. Introduction to isolated horizons in numerical relativity. Phys. Rev. D, 67(2):024018, 2003.
    [141] Doreen Mueller and Bernd Bruegmann. Toward a dynamical shift condition for unequal mass black hole binary simulations. arXiv.org:0912.3125, 2009.
    [142] Doreen Mueller, Jason Grigsby, and Bernd Bruegmann. Dynamical shift condition for unequal mass black hole binaries. arXiv.org:1003.4681, 2010.
    [143] Erik Schnetter. Time step size limitation introduced by the BSSN gamma driver. arXiv.org:1003.0859, 2010.
    [144] C. Palenzuela, I. Olabarrieta, L. Lehner, and S. L. Liebling. Head-on collisions of Boson stars. Phys. Rev. D, 75:064005, 2007.

    下載圖示 校內:2011-07-28公開
    校外:2011-07-28公開
    QR CODE