簡易檢索 / 詳目顯示

研究生: 陳慧君
Chen, Hui-Jun
論文名稱: L-統計量的貝瑞伊申界
BERRY-ESSEEN BOUND FOR LINEAR COMBINATIONS OF ORDER STATISTICS
指導教授: 李春得
Lea, Cheun-Der
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 19
中文關鍵詞: L-統計量貝瑞伊申界
外文關鍵詞: L-statistics, Berry-Essen bound
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假設 X1,…,Xn 是 n 個獨立且分配相同的隨機變數,而 X1n,X2n,…,Xnn 是其有序統計量,令Tn=n^(-1)*( i=1,2,...,n時, J(i/n)*h(Xin) 的和 ) 這樣形式的函數組合是有序統計量的線性組合(簡稱L-統計量 )。四十多年來一直有眾多學者研究L-統計量。
    在這篇文章中,我們感興趣的是在適當的條件下找尋此統計量趨向常態分配的誤差界限,同時在適當的可測函數 J 與 h 上,建立了貝瑞伊申界的收斂速度n^(-(1/2))*logn 。

    Let X1,…,Xn be n independent and identically distributed random variables , X1n,X2n,…,Xnn be their corresponding order statistics , and Tn=n^(-1)*( the sum of J(i/n)*h(Xin), i=1,2,...n) be the corresponding linear combination of order statistics ( L-statistics ) . L-statistics have received much attention during the last forty years .
    In this paper , we are interested in the rate of convergence to normality under suitable conditions , and establish a Berry-Essen bound of order n^(-(1/2))*logn for Tn under some regular conditions on the functions J and h .

    Contents 1.Introduction 1 2.Preliminaries 5 3.Main result 7 4.Examples 17 References 18

    References
    [1] S. Bjerve . Error bounds for linear combinations of order statistics . Ann.
    Statist. , V.5 , No.1-2 , p.357-369 , 1977 .
    [2] H. Chernoff , J. L. Gastwirth and M. V. Johns , Jr. . Asymptotic distribution
    of linear combinations of functions of order statistics with applications to
    estimation . Ann. Math. Statist. , 38 , p.52-72 , 1967 .
    [3] Kai Lai Chung . A Course in Probability Theory . Harcourt Brace
    Jovanovich , Inc. , p.225 , 1968 .
    [4] M. Csorgo and , P. Revesz . Strong Approximations in Probability and
    Statistics . Academic Press , Inc. , p.128 , 1981 .
    [5] H. A. David . Order Statistics . Wiley , New York , p.93 , 1969 .
    [6] B. V. Gnedenko and A. N. Kolmogorov . Limit Distributions for Sums of
    Independent Random Variables (translated from the Russian) . Addison-
    Wesley Publishing Co. Inc. Reading , Mass. , p.201 , 1954 .
    [7] R. Helmers . A Berry-Essen theorem for linear combination of order
    statistics . Ann. Prob. V.9 , No.2 , p.342-347 , 1981 .
    [8] Cheun Der Lea and Madan L. . Asymptotic properties of linear functions of
    order statistics . J. Statist. Planning . And Infer. , 18 , p.203-223 , 1988 .
    [9] Deli Li , M. B. Rao and R. J. Tomkins . The law of the iterated logarithm and
    central limit theorem for L-statistics . J. Mult. Anal. , 78(2) , p.191-217 ,
    2001 .
    [10] D. Mason and G. Shorack . Necessary and sufficient conditions for
    asymptotic normally of L-statistics . Ann. Probab. 20(4) , p.1779-1804 ,
    1992 .
    [11] D. S. Moore . An elementary proof of asmptotic normality of linear
    functions of order statistics . Ann. Math. Statist. , 39 , part 1 ,
    p.263-265 , 1968 .
    [12] V. V. Petrov . Sums of Independent Random Variables (translated from
    the Russian) . Springer-Verlag , p.286 , 1975 .
    [13] W. Rosenkrantz and N. E. O’Reilly . Application of the Skorokhod
    representation theorem to rates of convergence for linear combinations
    of order statistics . Ann. Math. Statist. , 43 , part 2 , p.1204-1212 , 1972 .
    [14] R. J. Serfing . Approximation Theorems of Mathematical Statistics .
    Wiley , New York , p.262 , 1980 .
    [15] R. J. Serfling . Generalized L- , M- , R-Statistics . Ann. Statist. , 12 ,
    p.76-86 , 1984 .
    [16] S. M. Stigler . Linear functions of order statistics . Ann. Math. Statist. ,
    40 , No.1-3 , p.770-788 , 1969 .
    [17] S. M. Stigler . Linear functions of order statistics with smooth weight
    functions . Ann. Statist. , 2 , No.4-6 , p.676-693 , 1974 .
    [18] T. De Wet . Rate of convergence of linear combinations of order
    statistics . S. Afric. Statist. J. , 8 , p.35-43 , 1974 .

    下載圖示 校內:立即公開
    校外:2009-06-19公開
    QR CODE