簡易檢索 / 詳目顯示

研究生: 林君翰
Lin, Jun-Han
論文名稱: 機車凸輪軸磨削製程自動化之研究
A Study on the Automation of the Grinding Process for Motorcycle Camshafts
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 99
中文關鍵詞: 資料採集與監控系統影像辨識模擬加工
外文關鍵詞: SCADA, Image Recognition, Machining Simulation, Parameter optimization
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著市場需求不斷增長,製造業面臨著提升產能的壓力。由於人力資源有限,傳統手工易受到操作員技術差異的影響,導致加工誤差與品質不穩定,自動化機台成為解決人力不足和提升加工精度的方案。本研究設計一台自動化設備結合監控與數據採集系統(SCADA),通過優化加工參數,以滿足大規模生產需求並改善加工品質。
    本研究的自動化機台運用了該系統來實現數據收集與監控,並結合田口實驗法尋找目標數值,通過回歸分析進行精細調整。模擬實驗部分,利用影像辨識技術與霍夫圓變換進行凸輪形狀的識別與圓心定位,判斷加工件的外型是否合格。進一步應用了實驗數據來創建加工作業模擬,這裡提出一個程式自適應方案,計算每個範圍適合的參數,當中不需要人工參予。
    研究結果的機台能夠通過參數調整,讓產量達標並將表面粗糙度控制在2.4 μm以下,實現95 %以上的合格率,提高了加工精度與生產效率。與傳統手工操作相比,操作時間減少了38 %。此外,模擬實驗提供具體參數數值,結果顯示,自適應轉速模式的波浪紋去除結果,皆在設定規範內,優於定轉速模式,將來可投入產線使用。

    With the growing market demand, the manufacturing industry faces challenges in enhancing production capacity and precision. To address labor shortages and the quality instability of traditional manual processing, this study developed an automated system integrated with a SCADA framework. By leveraging data monitoring, the Taguchi method, and regression analysis, machining parameters were optimized. Simulated image recognition technology was utilized for profile determination, while simulated machining techniques were employed to achieve intelligent manufacturing processes. The study up to the present indicates that the current system achieves a qualification rate exceeding 95%, maintains surface roughness below 2.4 μm, meets daily production targets, and reduces operation time by 38%, effectively replacing manual labor.

    摘要Ⅰ 致謝Ⅸ 目錄Ⅹ 第1章緒論1 1.1研究背景1 1.2文獻回顧3 1.2.1 監控與數據採集(SCADA)系統3 1.2.2 影像處理4 1.2.3 模擬設計5 1.3研究目的7 1.4研究規格以及目標9 第2章 系統作業、影像處理、模擬設計10 2.1 監控與數據採集系統(SCADA)10 2.2 影像處理12 2.3 模擬設計13 第3章實驗設計與研究方法15 3.1 實驗設備15 3.2 實驗流程與架構22 3.3系統建立26 3.4 田口實驗29 3.5 多項式回歸分析31 3.6 部品表面品質量測31 3.7影像識別32 3.8模擬做法35 3.9耐久測試37 第4章實驗結果與分析討論38 4.1數據收集分析及最佳化結果38 4.2.影像辨識65 4.3模擬加工-波浪紋消除68 4.4 耐久修正結果74 4.5 產率預估77 第5章結論與未來展望82 5.1 結論82 5.2 未來展望84 參考文獻85

    1.Wang, S., et al., Implementing smart factory of industrie 4.0: an outlook. International journal of distributed sensor networks, 2016. 12(1): p. 3159805.
    2.Gorecky, D., et al. Human-machine-interaction in the industry 4.0 era. in 2014 12th IEEE international conference on industrial informatics (INDIN). 2014. Ieee.
    3.Ahuett-Garza, H. and T. Kurfess, A brief discussion on the trends of habilitating technologies for Industry 4.0 and smart manufacturing. Manuf Lett 15: 60–63. 2018.
    4.Javaid, M., et al., Upgrading the manufacturing sector via applications of Industrial Internet of Things (IIoT). Sensors International, 2021. 2: p. 100129.
    5.Kumar, R., R.K. Singh, and Y.K. Dwivedi, Application of industry 4.0 technologies in SMEs for ethical and sustainable operations: Analysis of challenges. Journal of cleaner production, 2020. 275: p. 124063.
    6.Kiangala, K.S. and Z. Wang, An Industry 4.0 approach to develop auto parameter configuration of a bottling process in a small to medium scale industry using PLC and SCADA. Procedia Manufacturing, 2019. 35: p. 725-730.
    7.Kermani, M., et al., Intelligent energy management based on SCADA system in a real Microgrid for smart building applications. Renewable Energy, 2021. 171: p. 1115-1127.
    8.Morsi, I. and L.M. El-Din, SCADA system for oil refinery control. Measurement, 2014. 47: p. 5-13.
    9.Ramírez-Ortegón, M.A., et al., Transition pixel: A concept for binarization based on edge detection and gray-intensity histograms. Pattern Recognition, 2010. 43(4): p. 1233-1243.
    10.Torrente, M.-L., S. Biasotti, and B. Falcidieno, Recognition of feature curves on 3D shapes using an algebraic approach to Hough transforms. Pattern Recognition, 2018. 73: p. 111-130.
    11.李侑倫, 運用影像處理技術於元件外型尺寸量測之研究. 淡江大學航空太空工程學系碩士班學位論文, 2005. 2005: p. 1-102.
    12.Songwen, Y., S. Ling, and O. Junchen. Woodworking Saw Blade Size Detection System Based on Machine Vision. in Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence. 2019.
    13.Bu, Y. and J. Guo. The online detection system of concentric ring size based on machine vision. in Journal of Physics: Conference Series. 2022. IOP Publishing.
    14.Deng, W., et al. The application of visual technology in the measurement of parts. in 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2021. IEEE.
    15.Sjodin, B., How to generate random surfaces in COMSOL Multiphysics®. Comsol Blog, 2017.
    16.Cheung, C.F., et al., Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precision engineering, 2011. 35(4): p. 574-590.
    17.Xi, F. and D. Zhou, Modeling surface roughness in the stone polishing process. International Journal of Machine Tools and Manufacture, 2005. 45(4-5): p. 365-372.
    18.Lu, A., et al., Modeling and prediction of surface topography and surface roughness in dual-axis wheel polishing of optical glass. International Journal of Machine Tools and Manufacture, 2019. 137: p. 13-29.
    19.You, Z., et al., Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation. Mechanical Systems and Signal Processing, 2022. 171: p. 108904.
    20.Stango, R.J., Filamentary brushing tools for surface finishing applications. Metal Finishing, 2002. 100: p. 82-91.
    21.Mathai, G. and S. Melkote, Effect of process parameters on the rate of abrasive assisted brush deburring of microgrooves. International Journal of Machine Tools and Manufacture, 2012. 57: p. 46-54.
    22.Patel, N., P.L. Parihar, and J.S. Makwana, Parametric optimization to improve the machining process by using Taguchi method: a review. Materials Today: Proceedings, 2021. 47: p. 2709-2714.
    23.Maulud, D. and A.M. Abdulazeez, A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 2020. 1(2): p. 140-147.
    24.Ajona, M., P. Vasanthi, and D. Vijayan, Application of multiple linear and polynomial regression in the sustainable biodegradation process of crude oil. Sustainable Energy Technologies and Assessments, 2022. 54: p. 102797.
    25.Kumar, A., R.B. Chinnam, and F. Tseng, An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools. Computers & Industrial Engineering, 2019. 128: p. 1008-1014.

    無法下載圖示 校內:2030-01-13公開
    校外:2030-01-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE