簡易檢索 / 詳目顯示

研究生: 劉向寧
Leaw, Shiang-Ning
論文名稱: 以核糖體RNA基因內轉錄區序列及寡核苷酸陣列晶片鑑定臨床酵母菌
Identification of Medically Important Yeasts by Sequence Analysis of the Internal Transcribed Spacer Regions and by an Oligonucleotide Array
指導教授: 張憲彰
Chang, Hsien-Chang
張長泉
Chang, Tsung-Chain
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 92
中文關鍵詞: 核糖體RNA基因內轉錄區酵母菌寡核苷酸晶片序列分析
外文關鍵詞: Internal transcribed spacer regions, oligonucleotide array, sequence analysis, yeast
相關次數: 點閱:138下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因低免疫力病人的增加,由酵母菌所引起的感染有顯著增加的趨勢。除了一些較常分離到的菌外,不常見的菌種如Pichia, Rhodotorula, Trichosporon, 及Saccharomyces近年來也有被報導引起人類感染。因此正確且快速的菌種鑑定,對病人的治療有很大的幫助。本研究之目的,在評估以核糖體RNA基因內轉錄區(internal transcribed spacer regions, ITS)序列鑑定酵母菌之可行性,並發展一快速、可靠且可鑑定許多種酵母菌之寡核苷酸晶片(oligonucleotide array)。本研究第一部份主要評估以ITS序列鑑定臨床上引起感染之酵母菌的可行性。以PCR將373株(86種酵母菌)的ITS1及ITS2區域增殖並定序。這373菌株中總共包含299株參考菌株(reference strains)及74臨床分離株(clinical isolates)。將這些序列與GenBank基因資料庫裡的參考菌株以BLAST (Basic Local Alignment Search Tool)進行序列比對,以確定是否能以ITS序列鑑定酵母菌。結果顯示以ITS1及ITS2序列鑑定酵母菌的正確率(identification rate)分別為96.8% (361/373)及99.7% (372/373)。第二部分研究要探討以不同方式標誌的PCR產物與正向探針(sense probe)或反向探針(antisense probe)進行雜合反應時,對訊號強弱的影響,以供發展晶片的基礎。發現在雙股引子皆以毛地黃素標誌之PCR產物雜合反應所呈現的訊號最強。另外有時正向探針的雜合反應較強,有時則以反向探針較強,無法事先預測,只能由實驗得知,顯示目標基因與探針之間會因探針長度與序列的不同或二級結構之不同,而產生不同的雜合效率,來放大目標基因以進行雜合反應。第三部分研究是以ITS序列為基礎發展寡核苷酸晶片以鑑定77種(16屬)臨床相關的酵母菌。首先利用一對標誌有毛地黃素之真菌專一性引子(fungus-specific universal primers)將ITS區域增殖後,與固定在尼龍薄膜上的種專一性探針(species-specific probe)進行雜合反應,以鑑定菌種。本實驗測試了452株酵母菌 (419株目標菌株及33株非目標菌株),晶片的靈敏度(sensitivity)及特異性(specificity)分別為100%及97%,而檢測極限(detection limit)為10 pg DNA。以此晶片直接檢測42個陽性血瓶,其鑑定率為100%。本研究顯示,以ITS序列及DNA晶片鑑定酵母菌兼具快速及正確之特性,是一個具有發展潛力的檢驗工具。不管是ITS定序或以晶片鑑定皆可在24小時內完成。

    Infections caused by yeasts have increased in recent decades due to the increasing population of immunocompromised patients. In addition to Candida spp., infections caused by less common species such as Pichia, Rhodotorula, Trichosporon, and Saccharomyces have been widely reported. Accurate and rapid identification of yeast pathogens is important for appropriate treatment of patients with antifungal agents. The objectives of this study were to evaluate the feasibility of using the sequence of ribosomal DNA internal transcribed spacer (ITS) regions and an oligonucleotide array to identify clinically important yeasts. The first part of this thesis evaluated the feasibility of ITS sequencing for yeast identification. Both ITS1 and ITS2 regions of 373 strains (86 species) including 299 reference strains and 74 clinical isolates were amplified by PCR and sequenced. The sequences were compared to reference data available at the GenBank database using BLAST (Basic Local Alignment Search Tool) for species determination. The rates of correct identification by ITS1 and ITS2 sequence analysis were 96.8% (361/373) and 99.7% (372/373), respectively. The second part of this thesis was to evaluate primer labeling (one or both primers) and the use of sense or antisense probe on the hybridization signal. It was found that labeling of both primers produced, under most conditions, stronger hybridization signal. However, the effect of using sense or antisense probe on hybridization signal was not predictable. The third part of this thesis was to develop an oligonucleotide array to identify 77 species (16 genera) of clinically relevant yeasts based on the ITS sequence. The ITS regions were amplified by PCR with a pair of fungus-specific primers, followed by hybridization of the digoxigenin-labeled PCR product to a panel of oligonucleotide probes immobilized on nylon membrane for species identification. A collection of 452 yeast strains (419 target and 33 nontarget strains) was tested, and a sensitivity of 100% and a specificity of 97% were obtained by the array. The detection limit of the array was 10 pg of yeast genomic DNA per assay. In addition, 42 yeast-positive blood cultures were analyzed by the oligonucleotide array, and all specimens were correctly identified. In conclusion, yeast identification by both methods (sequence analysis and oligonucleotide array) is highly reliable and can be used as an alternative to the conventional identification methods. The whole procedure can be finished within 24 h starting from isolated colonies.

    Abstract..............................I Chinese abstract..............................III Acknowledgement..............................V Table of Contents..............................VII List of Figures..............................XI List of Tables..............................XII Chapter 1 Introduction..............................1 1-1 Yeast infections..............................1 1-2 Internal transcribed spacer regions (ITS)..............................3 1-3 Identification of yeasts..............................5 1-4 Objectives..............................7 Chapter 2 Identification of yeasts by sequences analysis of the internal transcribed spacer regions..............................9 2-1 The aim of this study..............................9 2-2 Materials..............................9 2-2.1 Yeast strains..............................9 2-2.2 DNA preparation..............................10 2-2.3 Amplification and sequencing of the ITS regions..............................11 2-2.4 Identification of yeast by ITS sequencing..............................21 2-3 Results..............................22 2-3.1 Identification of reference strains by ITS sequence analysis..............................22 2-3.2 Identification of clinical isolates by ITS sequence analysis..............................27 2-4 Discussion..............................28 Chapter 3 Evaluation of the signal intensity produced by hybridization of various labeled PCR products to sense and antisense probes..............................31 3-1 The aim of this study..............................31 3-2 Materials..............................31 3-2.1 Yeast strains..............................31 3-2.2 DNA preparation..............................31 3-2.3 Amplification for array hybridization..............................32 3-2.4 Design of oligonucleotide probes..............................33 3-2.5 Fabrication of oligonucleotide arrays..............................34 3-2.6 Hybridization procedures..............................37 3-2.7 Data analysis..............................38 3-3 Results..............................39 3-3.1 ITS amplification by using primer set P1 (ITS1 + ITS4-dig) ..............................39 3-3.2 ITS amplification by using primer set P2 (ITS1-dig + ITS4)..............................39 3-3.3 ITS amplification by using primer set P3 (ITS1-dig + ITS4-dig)..............................40 3-3.4 ITS amplification by using primer set P4 (ITS1-P + ITS4-dig) ..............................40 3-3.5 ITS amplification by using primer set P5 (ITS1-dig + ITS4-P).............................. 40 3-4 Discussion..............................43 Chapter 4 Identification of yeasts by an oligonucleotide array..............................45 4-1 The aim of this study..............................45 4-2 Materials..............................45 4-2.1 Yeast strains..............................45 4-2.2 DNA preparation..............................56 4-2.3 Amplification for array hybridization..............................56 4-2.4 Design of oligonucleotide probes..............................56 4-2.5 Fabrication of oligonucleotide arrays..............................64 4-2.6 Hybridization procedures..............................64 4-2.7 Analysis of discrepant strains..............................65 4-2.8 Limit of detection of the array..............................66 4-3 Results..............................67 4-3.1 Oligonucleotide probe development..............................67 4-3.2 Identification of reference strains by the array..............................68 4-3.3 Identification of clinical isolates by the array..............................71 4-3.4 Limit of detection of the array..............................72 4-4 Discussion..............................72 Chapter 5 Identification of clinical specimens by an oligonucleotide array..............................76 5-1 Blood specimens..............................76 5-2 Preparation of clinical specimens..............................76 5-2.1 DNA preparation from blood specimens..............................76 5-2.2 DNA preparation from nail specimen..............................77 5-3 Amplification of clinical specimens for array hybridization..............................78 5-4 Results..............................78 5-5 Discussion..............................80 Chapter 6 Conclusions..............................81 References..............................84 Publications..............................90

    1. Abliz, P., K. Fukushima, K. Takizawa, and K. Nishimura. 2004. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol. Med. Microbiol. 40:41-49.
    2. Brown, T. J., and R. M. Anthony. 2000. The addition of low numbers of 3' thymine bases can be used to improve the hybridization signal of oligonucleotides for use within arrays on nylon supports. J. Microbiol. Methods 42:203-207.
    3. Buchaille, L., A. M. Freydiere, R. Guinet, and Y. Gille. 1998. Evaluation of six commercial systems for identification of medically important yeasts. Eur. J. Clin. Microbiol. Infect. Dis. 17:479-488.
    4. Chang, H. C., S. N. Leaw, A. H. Huang, T. L. Wu, and T. C. Chang. 2001. Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J. Clin. Microbiol. 39:3466-3471.
    5. Chen, Y. C., J. D. Eisner, M. M. Kattar, S. L. Rassoulian-Barrett, K. Lafe, U. Bui, A. P. Limaye, and B. T. Cookson. 2001. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J. Clin. Microbiol. 39:4042-4051.
    6. Chen, Y. C., J. D. Eisner, M. M. Kattar, S. L. Rassoulian-Barrett, K. LaFe, S. L. Yarfitz, A. P. Limaye, and B. T. Cookson. 2000. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J. Clin. Microbiol. 38:2302-2310.
    7. Chowdhary, A., K. Becker, W. Fegeler, H. C. Gugnani, L. Kapoor, V. S. Randhawa, and G. Mehta. 2003. An outbreak of candidemia due to Candida tropicalis in a neonatal intensive care unit. Mycoses 46:287-292.
    8. Coignard, C., S. F. Hurst, L. E. Benjamin, M. E. Brandt, D. W. Warnock, and C. J. Morrison. 2004. Resolution of discrepant results for Candida species identification by using DNA probes. J. Clin. Microbiol. 42:858-861.
    9. Davies, F., S. Logan, E. Johnson, and J. L. Klein. 2006. Sternal wound infection by Trichosporon inkin following cardiac surgery. J. Clin. Microbiol. 44:2657-2659.
    10. De Baere, T., G. Claeys, D. Swinne, G. Verschraegen, A. Muylaert, C. Massonet, and M. Vaneechoutte. 2002. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region (ITS2). BMC Microbiol. 2:21.
    11. de Hoog, G. S., and A. H. Gerrits van den Ende. 1998. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183-189.
    12. Enache-Angoulvant, A., and C. Hennequin. 2005. Invasive Saccharomyces infection: a comprehensive review. Clin. Infect. Dis. 41:1559-1568.
    13. Fanci, R., and P. Pecile. 2005. Central venous catheter-related infection due to Candida membranaefaciens, a new opportunistic azole-resistant yeast in a cancer patient: a case report and a review of literature. Mycoses 48:357-359.
    14. Favel, A., A. Michel-Nguyen, F. Peyron, C. Martin, L. Thomachot, A. Datry, J. P. Bouchara, S. Challier, T. Noel, C. Chastin, and P. Regli. 2003. Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: case report and review of the literature. Diagn. Microbiol. Infect. Dis. 47:331-339.
    15. Fell, J. W., T. Boekhout, A. Fonseca, G. Scorzetti, and A. Statzell-Tallman. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol. Microbiol. 50 Pt 3:1351-1371.
    16. Fotedar, R., U. Banerjee, and A. R. Chaudhary. 2000. Outbreak of systemic candidiasis in low birth weight pre-term infants at a neonatal intensive care unit. J. Mycol. Med. 110:100-104.
    17. Franke-Whittle, I. H., S. H. Klammer, S. Mayrhofer, and H. Insam. 2006. Comparison of different labeling methods for the production of labeled target DNA for microarray hybridization. J. Microbiol. Methods 65:117-126.
    18. Freydiere, A. M., R. Guinet, and P. Boiron. 2001. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med. Mycol. 39:9-33.
    19. Frutos, R. L., M. T. Fernández-Espinar, and A. Querol. 2004. Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Antonie Van Leeuwenhoek 85:175-185.
    20. Fujita, S., B. A. Lasker, T. J. Lott, E. Reiss, and C. J. Morrison. 1995. Microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood. J. Clin. Microbiol. 33:962-967.
    21. Fukushima, M., K. Kakinuma, H. Hayashi, H. Nagai, K. Ito, and R. Kawaguchi. 2003. Detection and identification of Mycobacterium species isolates by DNA microarray. J. Clin. Microbiol. 41:2605-2615.
    22. Guo, Z., R. A. Guilfoyle, A. J. Thiel, R. Wang, and L. M. Smith. 1994. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22:5456-5465.
    23. Hazen, K. C. a. S. A. H. 2003. Candida, Cryptococcus, and other yeasts of medical importance, p. 1693-1711. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A, Pfaller, and R. H. Yolken (ed.), Manual of clinical microbiology, 8th ed. ASM Press, Washington, D.C.
    24. Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol 38:1510-1515.
    25. Hinrikson, H. P., S. F. Hurst, T. J. Lott, D. W. Warnock, and C. J. Morrison. 2005. Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J. Clin. Microbiol. 43:2092-2103.
    26. Holland, S. M., Y. R. Shea, and J. Kwon-Chung. 2004. Regarding "Trichosporon pullulans infection in 2 patients with chronic granulomatous disease". J. Allergy Clin. Immunol. 114:205-206; author reply 206.
    27. Hsiao, C. R., L. Huang, J. P. Bouchara, R. Barton, H. C. Li, and T. C. Chang. 2005. Identification of medically important molds by an oligonucleotide array. J. Clin. Microbiol. 43:3760-3768.
    28. Huang, A., J. W. Li, Z. Q. Shen, X. W. Wang, and M. Jin. 2006. High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray. J. Clin. Microbiol. 44:3299-3305.
    29. Ikuta, S., K. Takagi, R. B. Wallace, and K. Itakura. 1987. Dissociation kinetics of 19 base paired oligonucleotide-DNA duplexes containing different single mismatched base pairs. Nucleic Acids Res. 15:797-811.
    30. Iwen, P. C., S. H. Hinrichs, and M. E. Rupp. 2002. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med. Mycol. 40:87-109.
    31. Kontoyiannis, D. P., and R. E. Lewis. 2002. Antifungal drug resistance of pathogenic fungi. Lancet 359:1135-1144.
    32. Kurtzman, C. P., and C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331-371.
    33. Kurtzman, C. P., and C. J. Robnett. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35:1216-1223.
    34. Lane, S., J. Evermann, F. Loge, and D. R. Call. 2004. Amplicon secondary structure prevents target hybridization to oligonucleotide microarrays. Biosens. Bioelectron. 20:728-735.
    35. Leinberger, D. M., U. Schumacher, I. B. Autenrieth, and T. T. Bachmann. 2005. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J. Clin. Microbiol. 43:4943-4953.
    36. Li, Y. L., S. N. Leaw, J. H. Chen, H. C. Chang, and T. C. Chang. 2003. Rapid identification of yeasts commonly found in positive blood cultures by amplification of the internal transcribed spacer regions 1 and 2. Eur. J. Clin. Microbiol. Infect. Dis. 22:693-696.
    37. Lima, W. F., B. P. Monia, D. J. Ecker, and S. M. Freier. 1992. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry 31:12055-12061.
    38. Lin, D., L. C. Wu, M. G. Rinaldi, and P. F. Lehmann. 1995. Three distinct genotypes within Candida parapsilosis from clinical sources. J. Clin. Microbiol. 33:1815-1821.
    39. Lindsley, M. D., S. F. Hurst, N. J. Iqbal, and C. J. Morrison. 2001. Rapid identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J. Clin. Microbiol. 39:3505-3511.
    40. Luo, G., and T. G. Mitchell. 2002. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J. Clin. Microbiol. 40:2860-2865.
    41. Lupetti, A., A. Tavanti, P. Davini, E. Ghelardi, V. Corsini, I. Merusi, A. Boldrini, M. Campa, and S. Senesi. 2002. Horizontal transmission of Candida parapsilosis candidemia in a neonatal intensive care unit. J. Clin. Microbiol. 40:2363-2369.
    42. Majoros, L., G. Kardos, A. Belak, A. Maraz, L. Asztalos, E. Csanky, Z. Barta, and B. Szabo. 2003. Restriction enzyme analysis of ribosomal DNA shows that Candida inconspicua clinical isolates can be misidentified as Candida norvegensis with traditional diagnostic procedures. J. Clin. Microbiol. 41:5250-5253.
    43. Martin, C., D. Roberts, M. van Der Weide, R. Rossau, G. Jannes, T. Smith, and M. Maher. 2000. Development of a PCR-based line probe assay for identification of fungal pathogens. J. Clin. Microbiol. 38:3735-3742.
    44. Masclaux, F., E. Gueho, G. S. de Hoog, and R. Christen. 1995. Phylogenetic relationships of human-pathogenic Cladosporium (Xylohypha) species inferred from partial LS rRNA sequences. J. Med. Vet. Mycol. 33:327-338.
    45. Massonet, C., J. Van Eldere, M. Vaneechoutte, T. De Baere, J. Verhaegen, and K. Lagrou. 2004. Comparison of VITEK 2 with ITS2-fragment length polymorphism analysis for identification of yeast species. J. Clin. Microbiol. 42:2209-2211.
    46. Mele, G., M. Musci, C. Musto, L. D'Amato, A. Traficante, and N. Di Renzo. 2005. Pneumonia caused by Trichosporon pullulans in an autologous peripheral blood stem cell transplant recipient: possible misidentification. Bone Marrow Transplant 35:1219-1220.
    47. Millar, B. C., X. Jiru, J. E. Moore, and J. A. Earle. 2000. A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J. Microbiol. Methods. 42:139-147.
    48. Nguyen, M. H., J. E. Peacock, Jr., A. J. Morris, D. C. Tanner, M. L. Nguyen, D. R. Snydman, M. M. Wagener, M. G. Rinaldi, and V. L. Yu. 1996. The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am. J. Med. 100:617-623.
    49. Panagopoulou, P., J. Evdoridou, E. Bibashi, J. Filioti, D. Sofianou, G. Kremenopoulos, and E. Roilides. 2002. Trichosporon asahii: an unusual cause of invasive infection in neonates. Pediatr. Infect. Dis. J. 21:169-170.
    50. Pasqualotto, G. C., F. A. Copetti, C. F. Meneses, A. R. Machado, and A. L. Brunetto. 2005. Infection by Rhodotorula sp. in children receiving treatment for malignant diseases. J. Pediatr. Hematol. Oncol. 27:232-233.
    51. Pelletier, R., I. Alarie, R. Lagace, and T. J. Walsh. 2005. Emergence of disseminated candidiasis caused by Candida krusei during treatment with caspofungin: case report and review of literature. Med. Mycol. 43:559-564.
    52. Peplies, J., F. O. Glockner, and R. Amann. 2003. Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl. Environ. Microbiol. 69:1397-1407.
    53. Pfaller, M. A., and D. J. Diekema. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42:4419-4431.
    54. Pfaller, M. A., D. J. Diekema, A. L. Colombo, C. Kibbler, K. P. Ng, D. L. Gibbs, and V. A. Newell. 2006. Candida rugosa, an emerging fungal pathogen with resistance to azoles: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J. Clin. Microbiol. 44:3578-3582.
    55. Pfaller, M. A., D. J. Diekema, D. L. Gibbs, V. A. Newell, J. F. Meis, I. M. Gould, W. Fu, A. L. Colombo, and E. Rodriguez-Noriega. 2007. Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J. Clin. Microbiol. 45:1735-1745.
    56. Pfaller, M. A., D. J. Diekema, R. N. Jones, S. A. Messer, and R. J. Hollis. 2002. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J. Clin. Microbiol. 40:852-856.
    57. Pfaller, M. A., D. J. Diekema, S. A. Messer, R. J. Hollis, and R. N. Jones. 2003. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob. Agents. Chemother. 47:1068-1071.
    58. Pfaller, M. A., S. A. Messer, R. J. Hollis, R. N. Jones, G. V. Doern, M. E. Brandt, and R. A. Hajjeh. 1999. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn. Microbiol. Infect. Dis. 33:217-222.
    59. Ramani, R., S. Gromadzki, D. H. Pincus, I. F. Salkin, and V. Chaturvedi. 1998. Efficacy of API 20C and ID 32C systems for identification of common and rare clinical yeast isolates. J. Clin. Microbiol. 36:3396-3398.
    60. Reiss, E., K. Tanaka, G. Bruker, V. Chazalet, D. Coleman, J. P. Debeaupuis, R. Hanazawa, J. P. Latge, J. Lortholary, K. Makimura, C. J. Morrison, S. Y. Murayama, S. Naoe, S. Paris, J. Sarfati, K. Shibuya, D. Sullivan, K. Uchida, and H. Yamaguchi. 1998. Molecular diagnosis and epidemiology of fungal infections. Med. Mycol. 36 Suppl 1:249-257.
    61. Relogio, A., C. Schwager, A. Richter, W. Ansorge, and J. Valcarcel. 2002. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 30:e51.
    62. Rex, J. H., T. J. Walsh, J. D. Sobel, S. G. Filler, P. G. Pappas, W. E. Dismukes, and J. E. Edwards. 2000. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin. Infect. Dis. 30:662-678.
    63. Roy, B., and S. A. Meyer. 1998. Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J. Clin. Microbiol. 36:216-218.
    64. Scorzetti, G., J. W. Fell, A. Fonseca, and A. Statzell-Tallman. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res. 2:495-517.
    65. Shin, J. H., H. Kook, D. H. Shin, T. J. Hwang, M. Kim, S. P. Suh, and D. W. Ryang. 2000. Nosocomial cluster of Candida lipolytica fungemia in pediatric patients. Eur. J. Clin. Microbiol. Infect. Dis. 19:344-349.
    66. Sugita, T., M. Nakajima, R. Ikeda, T. Matsushima, and T. Shinoda. 2002. Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of Trichosporon species. J. Clin. Microbiol. 40:1826-1830.
    67. Sugita, T., A. Nishikawa, R. Ikeda, and T. Shinoda. 1999. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J. Clin. Microbiol. 37:1985-1993.
    68. Taj-Aldeen, S. J., S. H. Doiphode, and X. Y. Han. 2006. Kodamaea (Pichia) ohmeri fungaemia in a premature neonate. J. Med. Microbiol. 55:237-239.
    69. Tavanti, A., A. D. Davidson, N. A. Gow, M. C. Maiden, and F. C. Odds. 2005. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 43:284-292.
    70. Trost, A., B. Graf, J. Eucker, O. Sezer, K. Possinger, U. B. Gobel, and T. Adam. 2004. Identification of clinically relevant yeasts by PCR/RFLP. J. Microbiol. Methods. 56:201-211.
    71. Tung, S. K., L. J. Teng, M. Vaneechoutte, H. M. Chen, and T. C. Chang. 2006. Array-based identification of species of the genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus. J. Clin. Microbiol 44:4414-4424.
    72. Turenne, C. Y., S. E. Sanche, D. J. Hoban, J. A. Karlowsky, and A. M. Kabani. 1999. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 37:1846-1851.
    73. Volokhov, D., A. Rasooly, K. Chumakov, and V. Chizhikov. 2002. Identification of Listeria species by microarray-based assay. J. Clin. Microbiol. 40:4720-4728.
    74. Wahyuningsih, R., H. J. Freisleben, H. G. Sonntag, and P. Schnitzler. 2000. Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J. Clin. Microbiol. 38:3016-3021.
    75. Walsh, T. J., A. Groll, J. Hiemenz, R. Fleming, E. Roilides, and E. Anaissie. 2004. Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 10 Suppl 1:48-66.
    76. White, T. J., T. Bruns, S. Lee, and J. Taylor 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315-322. In M. A. Innis, D. H. Gefland, J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.
    77. Zaas, A. K., M. Boyce, W. Schell, B. A. Lodge, J. L. Miller, and J. R. Perfect. 2003. Risk of fungemia due to Rhodotorula and antifungal susceptibility testing of Rhodotorula isolates. J. Clin. Microbiol. 41:5233-5235.

    下載圖示 校內:2008-08-20公開
    校外:2009-08-20公開
    QR CODE