| 研究生: |
許哲強 Hsu, Che-Chiang |
|---|---|
| 論文名稱: |
台灣區域電力負載預測分析系統之建立與應用研究 A study on the Construction and Application of Taiwan Regional Electricity Load Forecasting Analysis System |
| 指導教授: |
陳家榮
Chen, Chia-Yon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 240 |
| 中文關鍵詞: | 區域電力負載預測分析系統 、類神經網路 、灰色理論 、區域性負載預測 |
| 外文關鍵詞: | Regional load forecasting, Grey theory, Regional Electricity Load Forecasting analysis s, Artificial neural network |
| 相關次數: | 點閱:110 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
就現階段台灣地區負載預測制度而言,預測的型態著重於總體負載預測以及部門別之負載預測。然而以台灣地區區域發展型態之不同,總體負載以及部門別電力負載往往忽略了區域間潛在變化以及區域不同發展階段對電力需求彈性不同的訊息。從另一角度來看,即使總體負載預測能準確地預測出電力負載,但卻無法得知負載發生之所在,此舉亦無助於電廠設置之選擇以及輸、配電線路之建設。
基於上述的說明,本研究之主旨在於根據台灣各區域的發展狀況,建構區域電力負載預測(RELFOR)分析系統,用以推估各區域未來需電與電力尖峰負載之情形,研究結果除可提供區域負載預測相關資訊,並可供區域電力輸、配線路等基礎建設以及電力管理決策單位之參考。
根據研究結果顯示,本研究所建構結合灰色系統理論與類神經網路之RELFOR預測分析系統,不但可使模式變數之選擇更具理論依據且能較傳統倒傳遞類神經網路與計量模式有較佳之預測成效。此外,根據本研究RELFOR模式預測結果發現,未來電力負載增加仍以北部最多。若進一步將各區未來電力尖峰負載與目前長期電源開發規劃計畫加以比較,可以發現南部地區未來有電力供應短缺的現象,值得有關單位加以重視。
Electricity power is one of the major input factors in economic development. To continually support the economic to growth and meet power requirements in the future, load forecasting has become very important for electric utilities. Moreover, accurate load forecast can be helpful in developing power supply strategy,financing planning, market research ,and electricity management. Up to now, load forecasting emphasized on aggregate or sector load forecasting in Taiwan, but aggregate or sector load forecasting can not predict where the load takes place and not be helpful in transmission line or substation construction.
Therefore, the purpose of this study is to use the Regional Electricity Load Forecasting (RELFOR) system to forecast the regional electricity demand and electric load in the future. Results of this study can be the basis of consideration of power basic constructions and, further, be the reference of power management authority.
From the results of this study, our RELFOR system can yield more accuracy predict results than the ANN model and econometric model. According to the forecasting results of our RELFOR model, the power load in Northern region would increase faster than the rest regions of Taiwan. Compared to the long-term power development planning of Taiwan, the Southern region has the power supply shortage crisis in future.
1. 王塗發,區域經濟指標估計之研究,行政院經濟建設委員會都市及住宅發展處委託研究,1996。
2. 台電公司,台灣電力公司九十年年報,2002。
3. 台電公司企劃處,91年長期負載預測(91年至105年),台電公司,2002。
4. 台電公司企劃處,統計年報,台電公司,1981-2002。
5. 田自力,灰色理論在預測與決策之研究,國力成功大學機械工程研究所博士論文,1996。
6. 中央氣象局,氣象統計年報,1981-2000。
7. 石齊平、郭照榮,當代計量經濟學,三民書局,1985。
8. 行政院主計處,中華民國85年台閩地區工商及服務業普查報告,1988。
9. 行政院經濟建設委員會,都市及區域發展統計彙編,1981-2001。
10. 行政院主計處,中華民國台灣地區國民所得,1981-2001。
11.行政院主計處,中華民國台灣地區家庭收支調查報告,1981-2001。
12.何明山,台灣地區未來用電需求量之預測研究,國立成功大學電機工程研究所碩士論文,1997。
13.李肖宗,“台灣電業市場自由化的競爭與限制”,邁向電力新紀元-電業自由化的展望國際研討會,2000。
14.吳漢雄、鄧聚龍、溫坤禮,灰色分析入門,高立圖書有限公司,1996。
15.姚良彬,模糊類神經網路應用於電力系統短期負載預測之研究,國立成功大學電機工程研究所碩士論文,1994。
16.許哲強、陳家榮,“灰色理論在區域需電預測之應用“,能源季刊,第29卷,第4期,頁96-108,1999。
17.許哲強,陳家榮,〝灰色理論在台灣地區短期負載預測之應用〞,台電工程月刊,第625期,頁132-140,2000。
18.許哲強,陳家榮,賴正文,〝類神經網路在區域負載預測之應用〞,台銀季刊,第52卷,第3期。頁215-243,2001。
19.許哲強,賴正文,陳家榮,〝預測方法之比較以台灣地區負載預測為例〞,能源季刊,第31卷,第4期。頁66-80,2001。
20.許哲強,賴正文,“灰色預測在電力負載預測之應用研究”,二OO一年灰色系統理論與應用學術研討會論文集,2001。
21.葉怡成,類神經網路模式應用與實作,儒林圖書公司,1995。
22.葉怡成,應用類神經網路,儒林圖書公司,1999。
23.葉若春、鄭春生、卜玉枝,“以實驗設計方法對倒傳遞類神經網路學習參數進行最佳化研究:對藥物動力學的應用為例”,管理與系統,第6卷,第1期,頁65-92,1999。
24.張偉哲、溫坤禮、張廷政,灰色關聯模型方法與應用,高立圖書有限公司,2000年。
25.張紘炬、張山盛,“台灣地區電力尖峰負載預測理論模型及其應用“,中國統計學報,第25卷,第12期,頁12490-12517,1987。
26.陳家榮、施勵行、賴正文,負載預測方法及制度之規劃研究,台灣電力公司與國立成功大學建教合作案,1993。
27.梁天旗,電力系統負載預測之灰色系統模式,國立成功大學電機工程研究所碩士論文,1995。
28.梁瑞勳、鄭清吉,“結合複線性回歸分析及模糊專家系統於短期負載預測“,第二十屆電力研討會論文集,頁1146-1150,2000。14.黃有評、陳朝光,“灰色系統之應用與展望”,模糊系統學刊,第4卷,第1期,頁1-7,1998。
29.黃世杰、史光榮,“高階統計方法應用於電力系統短期負載預測“,第二十屆電力研討會論文集,頁1161-1166,2000。
30.黃昭明、楊宏澤、王瑋明,“應用模糊時間序列模式於短期負載預測之研究“,第二十屆電力研討會論文集,頁1151-1155,2000。
31.董大鈞,類神經網路在中長期電力負載及需求預測之應用,國立成功大學資源工程研究所碩士論文,1994。
32.賴正文,區域性負載預測及電力供給規劃模型建立之研究,國立成功大學資源工程研究所博士論文,1997。
32.賴正文、陳家榮、許哲強,人工神經網路在長期負載之應用研究,台灣電力公司與南榮技術學院及國立成功大學建教合作案,2001。
34.薛立敏,台灣地區家計部門電力需求之研究,經濟部能委會,1985。
35.謝邦昌、李世傑、洪紹平、陳鳳惠、洪育民、陳振鴻,“台灣地區區域別電力需求預測之研究“,台電工程月刊,第601期,頁36-47,1998。
36.謝政勳,“應用灰色一次累加生成於短期電力負載預測“,第二十屆電力研討會論文集,頁1156-1160,2000。
37.Al-Saba.T., I.El-Amin, ” Artificial Neural Networks as Applied to Long-term Demand Forecasting”, Artificial Intelligence in Engineer, Vol.13,1999, pp. 189-197.
38.Barakat E.H., S.A. Al-Rashed, ”Analysis of the Impact of Dynamic Events on Power Requirements”, Electric Power Systems Research, Vol. 37, 1996, pp. 137-142.
39.Chandrashekara A.S., T Ananthapadmanabha, A.D. Kulkarni, “A Neuro-expert System for Planning and Load Forecasting of Distribution Systems”, Electric Power and Energy Systems, Vol. 21, 1999, pp. 309-314.
40.Chen C.S., Y.M. Tzeng, J.C. Hwang,” The Application of Artificial Neural Networks to Substation Load Forecasting”, Electric Power Systems Research, Vol. 38, 1996, pp. 153-160.
41.Chen J.F., W.M. Wang, C.M. Huang, “ Analysis of an Adaptive Time-series Autoregressive Moving-average (ARMA) Model for Short-Term Load Forecasting”, Electric Power Systems Research, Vol.34, pp. 187-196, 1995.
42.Chen S. T., D. C. Yu, A. R. Moghaddamio,” Weather Sensitive Short Term Load Forecasting Using Nonfully Connected Neural Network”, Transactions on Power Systems, Vol. 7, No. 3, Aug. 1992, pp. 1098-1105.
43.Chin C.C., L.J. Kao, D.F. Cook, ”Combining a Neural Network with a Rule-Base Expert System Approach for Short -Term Power Load Forecasting in Taiwan”, Expert System With Application, Vol. 13, No. 4, 1997, pp. 229-305.
44.Chow T.W.S., C.T. Leung,” Neural Network Based Short-Term Load Forecasting Using Weather Compensation”, IEEE Transactions on Power Systems, Vol. 11, No. 4,Nov. 1996, pp. 1736-1742.
45.Dash P.K., H.P. Satpathy, A.C. Liew, S. Rahman,” A Real-Time Short-Term Load Forecasting System Using Functional Link Network”, IEEE Transactions on Power Systems, Vol. 12, No. 2, May 1997, pp. 675-680.
46.Darbellay G.A., M. Slama, ”Forecasting the Short-term Demand for Electricity Do Neural Networks Stand a better chance?”, International Journal of Forecasting, Vol.16, 2000, pp. 71-83.
47.Dash P. K., H. P. Satpathy, A. C. Liew, ” A Real-Time Short-Term Peak and Average Load Forecasting System Using a Self-Organising Fuzzy Neural Network “, Engineering Applications of Artificial Intelligence, Vol. 11, 1998, pp. 307-316.
48.Djukanovic M., S. Ruzic, B. Babic, Y.H. Pao, “A neural-net based short term load forecasting using moving window procedure”, Electrical Power & Energy System, Vol. 17, No. 6, pp. 391-397, 1995.
49.Drezga I., S. Rahman, “ Input Variable Selection for ANN-Base Short Term Forecasting”, IEEE Transactions on Power Systems, Vol. 13, No. 4, Nov. 1998, pp. 1238-1244.
50.Drezga I., S. Rahman, “ Short Term Load Forecasting with Local ANN Predictors”, IEEE Transactions on Power Systems, Vol. 14, No. 3, Aug. 1999, pp. 844-850.
51.El-Keib, Ma X., Ma H., “ Advancement of Statistical Based Modeling Techniques for Short-Term Load Forecasting”, Electric Power Systems Research, Vol.35, 1995, pp. 51-58.
52.Girgis A.A., S. Varadan, ” Unit Commitment Using Load Forecasting Based on Artificial Neural Networks”, Electric Power Systems Research, Vol.32, 1995, pp. 213-217.
53.Hobbs B.F., U. Helman, S. Jitprapaikulsarn, S. Konda, D. Maratukulam,” Artificial Neural Networks for Short- term Energy Forecasting: Accuracy and Economic Value”, Neurocomputing, Vol. 23, pp. 71-84, 1998.
54.Hsu C.C.,” A Modified Grey Forecasting Model for Long-term Prediction” Journal of the Chinese Institute of Engineers, (Accepted), 2002.
55.Infield D.G., D.C. Hill,” Optimal Smoothing for Trend Removal in Short Term Electricity Demand Forecasting”, IEEE Transactions on Power Systems, Vol. 13, No. 3, Agu. 1998, pp. 1115-1120.
56.Islam S.M., S.M. Al-Alawi, K.A. Ellithy,” Forecasting Monthly Electric Load and Energy for a Fast Growing Utility Using an Artificial Neural Network”, Electric Power Systems Research, Vol. 34, pp. 1-9, 1995.
57.Kermanshahi B.,” Recurrent Neural Network for Forecasting Next 10 Year Loads of Nine Japanese Utilities”, Neurocomputing, Vol. 23, 1998, pp.. 125-133.
58.Kiartzis S.k., A.G. Bakirtzis, V. Petridis, “ Short-Term Load Forecasting Using Neural Networks” Electric Power Systems Research, Vol. 33, 1995, pp. 1-6.
59.Kiartzis S.J., C.E. Zoumas, J.B. Theocharis, A.G. Bakirtzis, V. Petridis, “ Short-term Load Forecasting in Autonomous Power System Using Artificial Neural Networks”, IEEE Transactions on Power Systems, Vol. 12, No. 4, Nov. 1997, pp. 1591-1596..
60.Kim Kwang-Ho, John-Keun Park, Kab-Ju Hwang, ”Implementation of Hybrid Short-term Load Forecasting System Using Artificial Neural Networks and Fuzzy Expert System”, IEEE Transactions on Power Systems, Vol. 10, No. 3, Aug. 1995, pp. 1534-1539.
61.Khotanzad A., A.R. Reza, T.L. Lu,” ANNSTLF-A Neural-Network-Based Electric Load Forecasting System”, IEEE Transactions on Neural Networks, Vol. 8, No. 4, July, 1997, pp. 835-846.
62.Kodogiannis V.S., E.M. Anagnostakis, “ A Study of Advanced Learning Algorithms for Short-Term Load Forecasting”, Engineering Applications of Artificial Intelligence, Vol. 12, 1999, pp. 159-173.
63.Lee, K.Y. and Park, J.H., “Short-term Load Forecasting Using an Artificial Neural Network”, IEEE Transactions on Power Systems, Vol.7, No.1, 1992, pp.124-131.
64.Liu K., S. Subbarayan, R.R. Shouts, M.T. Manry, C. Kwan, F.L. Lewis, J. Naccarino, ”Comparison of Very Short-Term Load Forecasting Techniques”, IEEE Transactions on Power Systems, Vol. 11, N2. 4, May. 1996, pp. 877-882.
65.Lu C.N., H.T. Wu, S.Vemuri,” Neural Network Based Short Term Load Forecasting”, IEEE Transactions on Power Systems, Vol. 8, No. 1, Feb. 1993, pp. 336-342.
66.McMenamin J. S., F. A. Monforte,” Short Term Energy Forecasting with Neural Networks”, The Energy Journal, Vol. 19, No. 4, 1998, pp.43-61.
67.Mohammed O., D. Park, R. Merchant, T. Dinh, C. Tong, A. Azeem,” Practical Experiences with An Adaptive Neural Network Short-Term Load Forecasting System”, IEEE Transactions on Power Systems, Vol. 10, No. 1, Feb. 1995, pp. 254-265.
68.Mohamad E.A., M.M. Mansour, S. El-Debeiky, K.G. Mohamad, N.D. Rao,” Result of Egypian Unified Grid Hourly Load Forecasting Using an Artificial Neural Network with Expert System Interface”, Electric Power Systems Research, Vol. 39, 1996, pp. 171-177.
69.Mohamed E.A., M.M. Mansour, S. El-Debeiky, K.G. Mohamed, ” Egyptian Unified Grid Hourly Load Forecasting Using Artificial Neural Network”, Electrical Power & Energy Systems, Vol. 20, No. 7, 1998, pp. 495-500.
70.Murphy, F.H., Conti, J.J., Shaw, S.H. and Sanders, R., “Modeling and Forecasting Energy Markets with the Intermediate Future Forecasting System”, Operations Research, Vol.36, No.3, 1988, pp.406-420.
71.Novak B.,” Superfast Autoconfiguring Artificial Neural Networks and Their Application to Power Systems”, Electric Power Systems Research, Vol. 35, 1995, pp. 11-16.
72.Paarmann L.D., M.D. Najar, ”Adaptive Online Load Forecasting Via Time Series Modeling”, Electric Power Systems Research, Vol.32, pp. 219-223, 1995.
73.Peng T.M., N.F. Hubele, G.G. Karady, ”Advantage in the Application of Neural Networks for Short Term Load Forecasting”, IEEE Transactions on Power Systems, Vol. 17, No. 1, Feb. 1992, pp. 250-257.
74.Peng T.M., N.F. Hubele, G.G. Karady, ”An Adaptive Network Approach to One-Week Ahead Load Forecasting”, IEEE Transactions on Power Systems, Vol. 8, No. 3, Aug. 1993, pp. 1195-1203.
75.Ramanathan R., R. Engle, C.W.J. Granger, F. Vahid-Araghi, C. Brace, “ Short-run Forecasts of Electricity Loads and Peaks”, International Journal of Forecasting, Vol.13, 1997, pp.161-174.
76.Sforna M., F. Proverbio, “ A Neural Network Operator Oriented Short-term and Online Load Forecasting Environment”, Electric Power Systems Research, Vol. 33, pp. 139-149, 1995.
77.Shinha A.K., J.K. Mandal,” Hierarchical Dynamic State Estimator Using ANN-Based Dynamic Load Prediction”, IEE Proc. Transm. Distrib. Vol. 146, No.6, 1999.
78.Svozil D., V. Kvasnicka, J. Pospichal, ”Introduction to Multilayer Feed-Forward Neural Networks”, Chemometrics and Intelligent Laboratory Systems, Vol. 39, pp.43-62, 1997.
79.Walczak S. N. Cerpa, ” Heuristic Principles for the Design of Artificial Neural Networks”, Information and Software Technology, Vol. 41, pp. 107-117, 1999.
80.Walczak S., Cerpa N., “ Heuristic Principles for the Design of Artificial Neural Networks”, Information and Software Technology, Vol. 41, pp. 107-117, 1999.
81.Willis, H.L. and Northcote-Green, J.E.D., “A Hierachical Recursive Method for Substantially Improving Trending of Small Area Load Forecasting”, IEEE Trans. on Power Apparatus and Systems, Vol.PAS-101, No.6, 1982, pp.1776-1783.
82.Willis, H.L. and Tram, H.N., “A Cluster Based V.A.I. Method for Distribution Load Forecating”, IEEE Transactions on Power Apparatus and Systems, Vol.PAS-102, No.8, 1983, pp.2677-2684.
83.Wong K.P.” Artificial Intelligence and Neural Network Applications in Power Systems”, IEE 2nd International Conference on Advances in Power System Control Operation and Management, pp. 37-46,Dec. 1993, Hong Kong.
84.Yoo H., R.L. Pimmel, ”Short Term Load Forecasting Using a Self-supervised Adaptive Neural Networl”, IEEE Transactions on Power Systems, Vol.14, No. 2, May 1999, pp. 779-784.