簡易檢索 / 詳目顯示

研究生: 吳佳穎
Wu, Chia-Ying
論文名稱: 奈米結構與傳統型碳化鎢/鈷粒子強化鎳基熱熔射合金塗層之磨潤性質研究
Tribological performance of thermal sprayed Ni-based alloy coatings reinforced with nano-structured and conventional WC/Co particles
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 127
中文關鍵詞: 鎳基合金塗層熱熔射技術磨潤性質奈米結構碳化鎢
外文關鍵詞: tribological properties, Ni-based alloy coatings, nano-structured WC, thermal spraying technique
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗採用熱熔射製程技術,於低碳鋼底材上披覆WC/Ni熔射塗層。主要目的為探討添加碳化鎢對鎳基熔射塗層之機械性質、磨潤性質及抗氧化性能之影響。實驗主要分為三個部份:第一部份探討WC摻雜比例(0 ~ 60 %)對於鎳基合金塗層性能之影響;第二部份探討微米(傳統型)及奈米尺寸之WC晶粒對於鎳基合金塗層性能之影響;第三部份探討熱熔射技術(HVOF and Flame spray/fusion)對於WC/Ni塗層性能之影響。
    由實驗結果得知,WC/Ni熔射塗層隨著WC摻雜比例之提升,硬度、抗磨耗、耐氧化方面的表現皆隨之提升,其中以60 %WC摻雜比例為最佳。而摻雜奈米結構WC之鎳基熔射合金塗層之各性能表現皆優於摻雜一般傳統型WC之鎳基合金塗層,證實奈米結構WC具有較優異之強化鎳基熔射合金效果。此外,HVOF製程所製備之塗層於各方面之性能表現亦優於Flame spray/fusion製程,證實此系列塗層較適於以HVOF製程製備。
    總結實驗結果,採用HVOF製程技術製備摻雜60 %奈米結構WC之鎳基熔射合金塗層具有最高硬度值HV0.21853.8及最佳抗磨耗及耐氧化性能表現。

    The main purpose of this research was to study the effects of WC addition on mechanical and tribological properties, and anti-oxidation of Ni-based thermal sprayed coatings. The WC/Ni coatings were prepared by thermal spraying technique. The experiment was divided into three parts. In the first part, the effect of content (0-60 % of WC addition) on the properties of Ni-based alloy coatings was investigated. In the second part, the effect of WC grain size, micro-scale (conventional) and nano-scale, on the properties of Ni-based alloy coatings was investigated. In the third part, the effects of thermal spraying processes (HVOF and Flame spray/fusion) on the properties of WC/Ni thermal sprayed coatings were investigated.
    The results revealed that the hardness, wear resistance, and oxidation resistance of WC/Ni coatings were increased with increasing content of WC addition. And, the coatings with 60 % WC addition showed the best properties. The performance of the Ni-based alloy coatings added with nano-structured WC was better than the ones added with conventional WC. It was proved that nano-structured WC provides better enhancements on Ni-based sprayed alloy coatings. The properties of the coatings prepared by HVOF were superior to the ones prepared by flame spray/fusion process. It was learned that coatings studied here were more suitable to be prepared by HVOF process.
    In conclusion, the Ni-based sprayed alloy coatings with addition of 60 % nano-structured WC prepared by HVOF had the highest hardness HV0.21853.8, the best wear resistance, and oxidation resistance.

    總 目 錄 授權書…………………………………………………………………………… Ⅰ 口試合格證明…………………………………………………………………… Ⅱ 摘要……………………………………………………………………………… Ⅲ Abstract………………………………………………………………………… Ⅳ 誌謝……………………………………………………………………………… Ⅴ 總目錄 ………………………………………………………………………… Ⅵ 表目錄 ………………………………………………………………………… Ⅷ 圖目錄 ………………………………………………………………………… Ⅸ 第一章 緒論…………………………………………………………………… 1 1-1 前言……………………………………………………………… 1 1-2 研究動機………………………………………………………… 2 第二章 理論探討與文獻回顧………………………………………………… 3 2-1 熱熔射技術……………………………………………………… 3 2-1-1熱熔射技術原理……………………………………………… 3 2-1-2 熱熔射技術分類…………………………………………… 4 2-2 熱熔射塗層……………………………………………………… 9 2-2-1 鎳基自熔合金塗層………………………………………… 9 2-2-2 碳化鎢/鈷瓷金塗層……………………………………… 12 2-2-3 奈米結構碳化鎢/鈷瓷金塗層…………………………… 14 2-2-4 碳化鎢/鈷強化鎳基合金塗層……………………………… 16 第三章 實驗方法與步驟……………………………………………………… 20 3-1實驗目的…………………………………………………………… 20 3-2實驗流程…………………………………………………………… 20 3-3實驗方法與規劃…………………………………………………… 21 3-3-1 實驗參數規劃……………………………………………… 21 3-3-2 試件製作和金相觀察……………………………………… 22 3-3-3 成分與元素分析…………………………………………… 23 3-3-4 微結構分析………………………………………………… 23 3-3-5 微硬度試驗………………………………………………… 24 3-3-6 磨耗試驗…………………………………………………… 24 3-3-7 氧化試驗…………………………………………………… 25 3-4 實驗設備………………………………………………………… 25 第四章 實驗結果與討論……………………………………………………… 27 4-1 熔射原材粉末分析……………………………………………… 27 4-2 HVOF製程系列…………………………………………………… 28 4-2-1 顯微組織和結構分析……………………………………… 28 4-2-2 硬度試驗……………………………………………………… 29 4-2-3 磨耗試驗…………………………………………………… 30 4-2-4 氧化試驗…………………………………………………… 32 4-3 Flame spray/fusion製程系列………………………………… 34 4-3-1顯微組織和結構分析………………………………………… 34 4-3-2 硬度試驗……………………………………………………… 36 4-3-3 磨耗試驗…………………………………………………… 36 4-3-4 氧化試驗…………………………………………………… 38 4-4 HVOF和Flame spray/fusion製程系列………………………… 39 4-4-1 基本性質…………………………………………………… 39 4-4-2 磨耗試驗…………………………………………………… 40 4-4-3 氧化試驗…………………………………………………… 41 第五章 結論與未來展望……………………………………………………… 43 5-1結論………………………………………………………………… 43 5-2未來展望…………………………………………………………… 45 第六章 參考文獻……………………………………………………………… 46 附錄……………………………………………………………………………… 107 附錄一 HVOF系列塗層斷面SEM圖…………………………………… 107 附錄二 HVOF系列塗層磨痕SEM圖…………………………………… 109 附錄三 HVOF系列塗層氧化GDS縱深分析圖………………………… 113 附錄四 Flame spray/fusion系列塗層斷面SEM圖………………… 116 附錄五 Flame spray/fusion系列塗層磨痕SEM圖………………… 120 附錄六 Flame spray/fusion系列塗層氧化GDS縱深分析圖……… 124 自述………………………………………………………………………………… 127 著作權聲明………………………………………………………………………… 128 表 目 錄 Table 2-1 Characteristics of common spray processing and coating………… 55 Table 3-1 Details of WC/Co cermet powders……………………………………… 56 Table 3-2 Details of Ni-based self-fluxing alloy powders…………………… 56 Table 3-3 Usage of powders in processes………………………………………… 56 Table 3-4 Spray processing parameters…………………………………………… 57 Table 3-5 Specimen codes of HVOF series………………………………………… 58 Table 3-6 Specimen codes of Flame spray/fusion series……………………… 58 Table 3-7 Composition of JIS S31C………………………………………………… 59 Table 3-8 Composition of AISI 52100 Cr-steel ball…………………………… 59 Table 3-9 Parameters of SRV wear test…………………………………………… 59 圖 目 錄 圖2-1 熔融顆粒高速撞擊基材表面形成扁平顆粒示意圖………………… 60 圖2-2 熱熔射塗層示意圖…………………………………………………… 60 圖2-3 熱熔射製程示意圖…………………………………………………… 61 圖2-4 熱熔射技術分類示意圖……………………………………………… 61 圖2-5 碳化鎢/鈷之脫碳機制示意圖………………………………………… 62 圖3-1 實驗流程圖…………………………………………………………… 63 圖3-2 Diamond Jet (DJ) 2700 (Sulzer Metco) ………………………… 64 圖3-3 Colmonoy Spraywelder MODEL J-3 (Wall Colmonoy ) ………… 64 圖3-4 (a) SRV磨耗測試機 (b) 下試件點磨磨痕示意圖………………… 65 圖4-1 Hoganas 1660鎳基自熔合金粉末 (a) 粉末外觀形貌(156 x); (b) 粉末外觀形貌(900 x);(c) 粉末剖面圖,無腐蝕狀態(3,010 x)… 66 圖4-2 Hoganas 1260鎳基自熔合金粉末 (a) 粉末外觀形貌(159 x); (b) 粉末外觀形貌(900 x);(c) 粉末剖面圖,無腐蝕狀態(2,000 x)… 67 圖4-3 Hoganas一般傳統型WC/Co粉末 (a) 粉末外觀形貌(158 x); (b) 粉末外觀形貌(2,000 x);(c) 粉末剖面圖(2,000 x) …………… 68 圖4-4 Inframat奈米結構型WC/Co粉末 (a) 粉末外觀形貌(160 x); (b) 粉末外觀形貌(3,000 x);(c) 粉末剖面圖(3,500 x) …………… 69 圖4-5 Hoganas 1660鎳基自熔合金粉末 (a) 腐蝕後粉末剖面圖;(b) 剖面全區域EDS成分分析………………… 70 圖4-6 Hoganas 1260鎳基自熔合金粉末 (a) 腐蝕後粉末剖面圖;(b) 剖面全區域EDS成分分析………………… 71 圖4-7 Hoganas一般傳統型WC/Co粉末 (a)粉末粉末剖面圖 (b) 淺灰色區域EDS成分分析,為WC相 (c) 深灰色區域EDS成分分析,為Co相…………………………………… 72 圖4-8 Inframat奈米結構型WC/Co粉末 (a) 粉末粉末剖面圖 (b) 淺灰色區域EDS成分分析,為WC相 (c) 深灰色區域EDS成分分析,為Co相…………………………………… 73 圖4-9 鎳基自熔合金粉末和碳化鎢/鈷瓷金粉末之XRD繞射圖………………… 74 圖4-10 Hconv系列塗層之XRD繞射圖……………………………………………… 75 圖4-11 Hnano系列塗層之XRD繞射圖……………………………………………… 76 圖4-12 Hconv系列塗層之橫截面圖………………………………………………… 77 圖4-13 Hnano系列塗層之橫截面圖………………………………………………… 78 圖4-14 (a) Hconv-00塗層斷面顯微組織 (b) 各區域EDS分析………………… 79 圖4-15 (a) Hconv-20塗層斷面顯微組織 (b) 各區域EDS分析………………… 80 圖4-16 HVOF系列塗層之硬度試驗結果…………………………………………… 81 圖4-17 HVOF系列塗層之SRV點磨耗試驗結果 (a) 對磨材:鉻鋼球 (b) 對磨材:氮化矽球…………………………… 82 圖4-18 (a) Hconv系列塗層之磨痕(對磨材:鉻鋼球) (b) 磨痕EDS分析(方形區域)……………………………………… 83 圖4-19 (a) Hnano系列塗層之磨痕(對磨材:鉻鋼球) (b) 磨痕EDS分析(方形區域)……………………………………… 84 圖4-20 (a) Hconv系列塗層之磨痕(對磨材:氮化矽球) (b) 磨痕EDS分析(方形區域)……………………………………… 85 圖4-21 (a) Hnano系列塗層之磨痕(對磨材:氮化矽球) (b) 磨痕EDS分析(方形區域)……………………………………… 86 圖4-22 HVOF系列塗層之磨痕局部放大圖 (塗層為Ni-10 %WC,對磨材為氮化矽球。)…………………………… 87 圖4-23 HVOF系列塗層經氧化之XRD繞射圖………………………………………… 88 圖4-24 HVOF系列塗層之抗氧化試驗結果………………………………………… 89 圖4-25 Fconv系列塗層之XRD繞射圖……………………………………………… 90 圖4-26 Fnano系列塗層之XRD繞射圖……………………………………………… 91 圖4-27 Fconv系列塗層之橫截面圖………………………………………………… 92 圖4-28 Fnano系列塗層之橫截面圖………………………………………………… 93 圖4-29 (a) Fconv-00塗層斷面顯微組織 (b) 各區域EDS分析………………… 94 圖4-30 (a) Fconv-20塗層斷面顯微組織 (b) 各區域EDS分析………………… 95 圖4-31 (a) Fconv-40塗層斷面顯微組織 (b) 各區域EDS分析………………… 96 圖4-32 (a) Fnano-20塗層斷面顯微組織 (b) 各區域EDS分析………………… 97 圖4-33 (a) Fnano-60塗層斷面顯微組織 (b) 各區域EDS分析………………… 98 圖4-34 Flame spray/fusion系列塗層之硬度試驗結果………………………… 99 圖4-35 Flame spray/fusion系列塗層之SRV點磨耗試驗結果 (a) 對磨材:鉻鋼球 (b) 對磨材:氮化矽球…………………………… 100 圖4-36 (a) Fconv系列塗層之磨痕(對磨材:鉻鋼球) (b) 磨痕EDS分析(方形區域)…………………………………………… 101 圖4-37 (a) Fnano系列塗層之磨痕(對磨材:鉻鋼球) (b)磨痕EDS分析(方形區域)…………………………………………… 102 圖4-38 (a) Fconv系列塗層之磨痕(對磨材:氮化矽球) (b)磨痕EDS分析(方形區域)…………………………………………… 103 圖4-39 (a) Fnano系列塗層之磨痕(對磨材:氮化矽球) (b)磨痕EDS分析(方形區域)…………………………………………… 104 圖4-40 Flame spray/fusion系列塗層經氧化之XRD繞射圖……………………… 105 圖4-41 Flame spray/fusion系列塗層之抗氧化試驗結果……………………… 106

    1. L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory”, J. Phys. Chem. 90 (1986) 2555–2560.
    2. F.A. Ponce and D.P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices”, Nature 386 (1997) 351–359.
    3. A. Wold, “Photocatalytic properties of titanium dioxide (TiO2)”, Chem. Mater. 5 (1993) 280–283.
    4. Y.C. Zhu, T. Liu and C.X. Ding, “Structural characterization of TiO2 ultrafine particles”, J. Mater. Res. 14 (1999) 442–446.
    5. F.H. Froes and C. Suryanarayana, “Nanocrystalline Metals for Structural Applications”, JOM 41 (1989) 12–17.
    6. Q. Han Bing, J. Lavernia Enrique and A. Mohamed Farghalli, “Mechanical properties of nanostructured materials”, Rev. Adv. Mater. Sci. Eng. 9 (2005) 1–16.
    7. V.L. Tellkamp, M.L. Lau, A. Fabel and E.J. Lavernia, “Thermal spraying of nanocrystalline Inconel 718”, Nanostruct. Mater. 9 (1997) 489–492.
    8. M. L. Lau, H. G. Jiang and E. J. Lavernia, “Synthesis and Characterization of Nanocrystalline 316-Stainless Steel Coatings by High Velocity Oxy-Fuel Spraying”, Proceedings of 15th International Thermal Spray Conference, Nice, France, Vol. 1, 1998, 379–384.
    9. Y.C. Zhu, M.H. Huang, C.K. Chang and C.X. Ding, “Investigation on structural transform of nano-titania powders during plasma spraying process”, J. Inorg. Mater. 113 (1998) 923–926.
    10. Y.C. Zhu and C.X. Ding, “Plasma spraying of porous nanostructured TiO2 film”, Nanostruct. Mater. 11 (1999) 319–323.
    11. A.R. Nicoll, “Self-fluxing coatings for stationary gas turbines”, Thin Solid Films 95 (1982) 285–295.
    12. W.P. Clark, “'High tech' hardfacing alloys combat corrosion and abrasion of metal parts”, Welding J. 64 (1985) 69–71.
    13. M. Rosso and A. Bennani, “Studies of new applications of Ni-based powders for hardfacing processes”, PM World Congress Thermal Spraying/Spray Forming, 1998, 524–530.
    14. J. Rodríguez, A. Martín, R. Fernández and J.E. Fernández, “An experimental study of the wear performance of NiCrBSi thermal spray coatings”, Wear 255 (2003) 950–955.
    15. Y. Matsubara, M. Kumagawa, Y. Sochi and A. Notomi, “Application of self-fused alloy coating by HF induction heating”, Thermal Spraying--Current Status and Future Trends, Kobe, Japan, Vol. 1, 1995, 1001–1004.
    16. N. Takasaki, A. Tomiguchi, Y. Sochi and A. Ohmori, “Fusing of Sprayed Nickel-Base Coatings by Induction Heating”, Thermal Spray: International Advances in Coatings Technology, Orlando, Florida, USA, 1992, 273–278.
    17. A. Tomiguchi, Y. Sochi and Y. Matsubara, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 1061–1065.
    18. C. Chuanxian, H. Bingtain, L. Huiling, “Plasma wear resistance of ceramic and cermet coating materials”, Thin Solid Films 118 (1984) 485–493.
    19. H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson and P.M. Young, “Parameter study of HP/HVOF deposited WC–Co coatings”, J. Thermal Spray Technol. 7 (1998) 97–107.
    20. A.K. Akasawat, “Wear properties of WC–Co coatings with plasma and high velocity oxy fuel spraying”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 281–286.
    21. H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux and V.R. Parameswaran, “Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings”, Wear 225 (1999) 825–834.
    22. A. Karimi, C. Verdon, J.L. Martin and R.K. Schmid, “Slurry erosion behaviour of thermally sprayed WC–M coatings”, Wear 186–187 (1995) 480–486.
    23. 蕭威典,“熔射覆膜技術”,全華科技圖書股份有限公司,2006 年7 月。
    24. 劉茂賢,“熔射製程與即時監控技術之原理與應用簡介”,工業材料雜誌,2005年2 月,123–131。
    25. L. Pawlowski, “The Science and Engineering of Thermal Spray Coating”, John Wiley & Sons, UK, 1995.
    26. 吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,“超音速熔射技術簡介及其應用”,工業材料雜誌,2005年2 月,117–122。
    27. H.J. Kim, S.Y. Hwang, C.H. Lee and P. Juvanon, “Assessment of wear performance of flame sprayed and fused Ni-based coatings”, Surf. Coat. Technol. 172 (2003) 262–269.
    28. S. Grainger and J.Blunt, “Engineering coatings, design and applications”, Abington Publishing, Cambridge UK, 1995.
    29. J.M. Miguel, J.M. Guilemany and S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different Processes”, Tribology International 36 (2003) 181–187.
    30. 李文亞、李長久,“冷噴塗特性”,中國表面工程,2002,12–16。
    31. 吳伯成,“超音速火焰熔射技術”,工業技術研究院工業材料研究所,1992。
    32. F. Otsubo, H. Era and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron”, J. Therm. Spray Techn 9(1) (2000) 107–113.
    33. S. Lebaili and S. Hamar-thibault, “Equilibres liquide-solide dans le systeme Ni-B-Si dans la region riche en nickel”, Acta Metall, French, 35 (1987)701–710.
    34. AWS committee on brazing and soldering, Brazing manual, 3rd. edition, American Welding Society, Miami, 1975, 21–54.
    35. L.N. Moskowitz and E. Klar, Conference on Modern Developments in Powder Metallurgy, Washington, USA, Vol. 14, 1980, 435–454.
    36. J.P. Tu, M.S. Liu and Z.Y. Mao, “Erosion resistance of Ni–WC self-fluxing alloy coating at high temperature”, Wear 209 (1997) 43–48.
    37. Z. Ding, R. Knight and R.W. Smith, “Abrasion Wear Characteristics of Ni-Base Self-Fluxing Alloy Spray Welding Over-Layers”, Proceeding of the 1st United Thermal Spray Conference, Materials Park, Ohio, USA, 1997, 91–95.
    38. H.J. Kim and Y.J. Kim, “Microstructural evaluations of the plasma transferred arc coated layers on the hardness wear resistance and corrosion for the hardfacing of Ni-and Co-based alloys”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 217–224.
    39. O. Knotek, E. Lugschneider and H. Reimann, “Structure of Ni-rich Ni–Cr–B–Si coating alloys”, J. Vac, Sci. Technol. 12 (1975) 770–772.
    40. O. Knotek and E. Lugschneider, “On the structure of Ni–Cr–B–Si hardfacing alloys and their bonding reactions”, J. Vac. Sci. Technol. 11 (1974) 789–801.
    41. S. Lebaili, M. Durand-Charee and S. Hamar-Thibault, “The metallurgical structure of as-solidified Ni-Cr-B-Si-C hardfacing alloys”, J. Mater. Sci. Eng. 23 (1988) 3603–3611.
    42. Y.H. Shieh, J.T. Wang, H.C. Shih and S.T. Wu, “Alloying and post-heat-treatment of thermal-sprayed coatings of self-fluxing alloys”, Surf. Coat. Technol. 58 (1993) 73–77.
    43. Q. Li, D. Zhang, T. Lei, C. Chen and W. Chen, “Comparison of laser-clad and furnace-melted Ni-based alloy microstructures”, Surf. Coat. Technol. 137 (2001) 122–135.
    44. M.C. Lin, L.S. Chang, H.C. Lin, C.H. Yang and K.M. Lin, “A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating”, Surf. Coat. Technol. 201 (2006) 3193–3198.
    45. W.M. Zhao, Y. Wang, T. Han, K.Y. Wu and J. Xuea, “Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF”, Surf. Coat. Technol. 183 (2004) 118–125.
    46. J. E. Fernández, M.R. Fernández, R.V. Diaz and R.T. Navarro, “Abrasive wear analysis using factorial experiment design”, Wear 255 (2003) 38–43.
    47. M.P. Planche, H. Liao, B. Normand and C. Coddet, “Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes”, Surf. Coat. Technol. 200 (2005) 2465–2473.
    48. S.F. Wayne, J.G. Baldoni and S.T. Buljan, “Abrasion and erosion of WC–Co with controlled microstructure”, Tribol. Trans. 33 (1990) 611–617.
    49. M. Masuda, Y. Kuroshima and Y. Chujo, “Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials”, Wear 169 (1993) 135–140.
    50. S. Usmani, S. Sampath, D.L. Huock and D. Lee, “Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings”, Tribol. Trans. 40 (1997) 470–478.
    51. K.H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier Science Publishers BV, Amsterdam, 1987.
    52. J. Mateos, J.M. Cuetos, E. Fernandez and R. Vijande, “Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting ”, Wear 239 (2000) 274–281.
    53. K. Jia and T.E. Fischer, “Sliding wear of conventional and nanostructured cemented carbides”, Wear 203–204 (1997) 310–318.
    54. V. Fervel, B. Normand, H. Liao, C. Coddet, E. Bêche and R. Berjoan, “Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings”, Surf. Coat. Technol. 111 (1999) 255–262.
    55. Y. Wang and P. Kettunen, “The optimization of spraying parameters for WC–Co coatings by plasma and detonation-gun spraying”, Thermal Spray International Advances in Coatings Technology, ASM International, Metals Park, OH, 1992, 575–580.
    56. B. Schultrich, L.M. Berger, J. Menker and A. Oswald, “Influence of carbide powder composition on decarburization during air plasma spraying”, Proceedings of the 2nd Plasma-Technik Symposium, Lucerne, Switzerland, 1991, 363–371.
    57. C. Verdon, A. Karimi and J.L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures”, Mater. Sci. Eng. A 246 (1998) 11–24.
    58. J. Nerz, B. Kushner and A. Rotolico, “Microstructural evaluation of tungsten carbide–cobalt coatings”, J. Therm. Spray Technol. 1 (2) (1992) 147–152.
    59. M.S.A. Khan, T.W. Clyne and A.J. Sturgeon, “Microstructure and abrasion resistance of WC–Co coatings produced by high velocity oxy-fuel spraying”, Thermal Spray: A United Forum for Scientific and Technological Advances ASM International, Metals Park, OH, 1997, 681–690.
    60. Y.M. Yang, H. Liao and C. Coddet, “New performance for HVOF thermal spraying systems with the use of natural gas”, Proceedings of 14th International Spray Conference, Osaka, Japan High Temperature Society of Japan, 1995, 307–312.
    61. D.A. Stewart, P.H. Shipway and D.G. McCartney, “Influence of heat treatment on the abrasive wear behaviour of HVOF sprayed WC–Co coatings”, Surf. Coat. Technol. 105 (1998) 13–24.
    62. R. Schwetzke and H. Kreye, “Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems”, Thermal Spray: Meeting the Challenges of the 21st Century vol. 1 ASM International, Metals Park, OH (1998), 187–192.
    63. Sh. Khameneh Asl, M. Heydarzadeh Sohi, K. Hokamoto and M. Uemura, “Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings”, Wear 260 (2006) 1203–1208.
    64. V. Fervel, B. Normand, H. Liao, C. Coddet, E. Bêche and R. Berjoan, “Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings”, Surf. Coat. Technol. 111 (1999) 255–262.
    65. M.E. Vinayo, F. Kassabji, J. Guyonne and P. Fauchais, “Plasma sprayed WC–Co coatings”, J. Vac. Sci. Technol. A3 (6) (1985) 2483–2489.
    66. B. H. Kear, G. Skandan, and R. K. Sadangi, “Factors controlling decarburization in HVOF sprayed nano-WC-Co hardcoatings”, Scripta mater. 44 (2001) 1703–1707.
    67. J.P. Tu, M.S. Liu and Z.Y. Mao, “Erosion resistance of Ni-WC self-fluxing alloy coating at high temperature”, Wear 209 (1997) 43–48.
    68. D.G.F. O’Quigley, S. Luyckx and M.N. James, “An empirical ranking of a wide range of WC–Co grades in terms of their abrasion resistance measured by the ASTM standard B611-85 test”, Int. J. Refract. Met. Hard Mater. 15 (1997) 73–79.
    69. K. Jia and T.E. Fischer, “Sliding wear of conventional and nanostructured cemented carbides”, Wear 203–204 (1997) 310–318.
    70. K. Jia and T.E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides”, Wear 200 (1996) 206–214.
    71. B.H. Kear and L.E. McCandlish, “Chemical processing and properties of nanostructured WC–Co materials”, Nanostruct. Mater. 3 (1993) 19–30.
    72. L.E. McCandlish, B.H. Kear, B.K. Kim and L.W. Wu, “Low pressure plasma-sprayed coatings of nanophase WC–Co”, in: R.M. Yazici. (Ed.), Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 113–119.
    73. K. Jia and T.E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides”, Wear 200 (1996) 206.
    74. K. Jia and T.E. Fischer, “Sliding wear of conventional and nanostructured cemented carbides”, Wear 203–204 (1997) 310.
    75. M. Gell, “Applying nanostructured materials to future gas turbine engines”, JOM 46 (1994) 30–34.
    76. K. Jia, T. E. Fischer and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites”, Nanostruct. Mater. 10 (1998) 875–891.
    77. S.I. Cha, S.H. Hong, G.H. Ha and B.K. Kim, “Microstructure and mechanical properties of nanocrystalline WC-10Co cemented carbides”, Scripta Mater. 44 (2001) 1535–1539.
    78. D.A. Stewart, P.H. Shipway and D.G. McCartney, “Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings”, Wear 225–229 (1999) 789–798.
    79. Y. Zhu, K. Yukimura, C. Ding and P. Zhang, “Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying”, Thin Solid Films 388 (2001) 277–282.
    80. H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway and J. Liu, “Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC–Co coatings”, Wear 258 (2005) 333–338.
    81. P.H. Shipway, D.G. McCartney and T. Sudaprasert, “Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC–Co coatings”, Wear 259 (2005) 820–827.
    82. Y.C. Zhu, K. Yukimura, C.X. Ding and P.Y. Zhang, “Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying”, Thin Solid Films 388 (2001) 277–282.
    83. G. Skandan, R. Yao, B.H. Kear, Y. Qiao, L. Liu and T.E. Fischer, “Multimodal powders: a new class of feedstock material for thermal spraying of hard coatings”, Scripta mater. 44 (2001) 1699–1702.
    84. H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson and P.M. Young, “Parameter study of HP/HVOF deposited WC-Co coatings”, J. Thermal Spray Tech. 7 (1998) 97–107.
    85. A.K. Akasawat, “Wear properties of WC–Co coatings with plasma and high velocity oxy fuel spraying”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 281–286.
    86. M.R. Dorfman, B.A. Kushner, J. Nerz and A.J. Rotolico, “A technical assessment of high velocity oxygen-fuel versus high energy plasma tungsten carbide–cobalt coatings for wear resistance”, Proceedings of the 12th International Thermal Spray Conference, London, 1989, 291–302.
    87. K. Niemi, P. Vuoristo, T. Mantyla, G. Barbezat and A.R. Nicoll, “Abrasion wear resistance of carbide coatings deposited by plasma and high velocity combustion processes”, Thermal Spray: International Advances in Coating Technology, ASM Int., Materials Park, OH, USA, 1992, 685–689.
    88. J. Nerz, B. Kushner and A. Rotolico, “Effects of deposition methods on the physical properties of tungsten carbide 12 wt.% cobalt thermal spray coatings”, Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 135–143.
    89. R. Schwetzke and H. Kreye, “Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems”, Thermal Spray: Meeting the challenges of the 21st century, ASM Int., Materials Park, OH, USA, 1998, 187–192.
    90. J. Wang, K. Li, D. Shu, X. He, B. Sun, Q. Guo, M. Nishio and H. Ogawa, “Effects of structure and processing technique on the properties of thermal spray WC–Co and NiCrAl WC–Co coatings”, Mater. Sci. Eng. A 371 (2004) 187–192.
    91. H. Wang, W. Xia and Y. Jin. “A study on abrasive resistance of Nibased coatings with a WC hard phase”, Wear 195 (1996) 47–52.
    92. R. Franch, C. Lorenzana, J.M. Miguel and J.M. Guilemany, “Recubrimientos de Cermet/NiCrBSi resistences al desgaste obtenidos por proyección térmica de alta velocidad (HVOF), Soldadura y tecnologías de union”, Spanish, 67 (2001) 9–14.
    93. Y. Shieh, J. Wang, H. Shih and S. Wu, “Allowing and post-heat treatment of thermal sprayed coatings of self-fluxing alloys”, Surf. Coat. Technol. 58 (1993) 73–77.
    94. I. Kvemes, E. Lugscheider and Y. Lindblom, Proc. The 2nd European Symposium on Engineering Ceramics, London, UK, Elsevier Applied Science, Amsterdam, 1987, 45–79.
    95. G.R. Heath and P.A. Kamer, Surface Modification Technology IX, Cleveland, Ohio, USA, 1995, 109–113.
    96. P. Heimgartner, I. Kretsner, R. Polak and P.A. Kammer, The 5th European Conference on Advanced Materials, Processes and Applications, Surface Engineering and Functional Materials, Mastricht, Netherlands, Vol. 3, 1997, 109–113.
    97. G.R. Bell, “Furnace Fused Spray Metal Coatings”, Proceedings of the Eighth International ThermalF Spraying Conference, Miami, Florida, USA, 1976, 396–406.
    98. H. Wang, W. Xia and Y. Jin, “A study on abrasive resistance of Ni-based coatings with a WC hard phase”, Wear 195 (1996) 47–52.
    99. W. Cerri, R. Mortinella, G.P. Mor, P. Bianchi and D.D. Anglo, “Laser deposition of carbide-reinforced coating”, Surf. Coat. Technol. 49 (1991) 40–45.
    100. N. Axen and S. Jacobson, “A model for the abrasive wear resistance of multiphase materials”, Wear 174 (1994) 187–199.
    101. A. Martín, J. Rodríguez, J.E. Fernández and R. Vijande, “Sliding wear behaviour of plasma sprayed WC-NiCrBSi coatings at different temperatures”, Wear 251 (2001) 1017–1022.
    102. J. E. Fernández, M.R. Fernández, R.V. Diaz and R.T. Navarro, “Abrasive wear analysis using factorial experiment design”, Wear 255 (2003) 38–43.
    103. Y.C. Zhua, C. X. Ding, K. Yukimura, T. Xiao and P.R. Strutt, “Deposition and characterization of nanostructured WC–Co coating”, Ceramics International 27 (2001) 669–674.
    104. J.H. He and J.M. Schoenung, “A review on nanostructured WC–Co coatings”, Surf. Coat. Technol. 157 (2002) 72–79.
    105. S. Scrivani, S. Ianelli, A. Rossi, R. Groppetti, F. Casadei and G. Rizzi, “A contribution to the surface analysis and characterisation of HVOF coatings for petrochemical application”, Wear 250 (2001) 107–113.
    106. S. Soykan, F. Üstel, E. Çelik and E. Avci, “Friction and wear behaviours of plasma-sprayed ceramic coatings”, J. Turkish Eng. Environ. Sci. 21 (1997) 417–423.
    107. J. Kawakita, T. Fukushima, S. Kuroda and T. Kodama, “Corrosion behaviour of HVOF sprayed SUS316L stainless steel in seawater”, Corrosion Sci. 44 (2002) 2561–2581.
    108. A.H. Dent, A.J. Horlock, D.G. McCartney and S.J. Harris, “Microstructure formation in high velocity oxy-fuel thermally sprayed Ni–Cr–Mo–B alloys”, Mater. Sci. Eng. A 283 (2000) 242–250.

    下載圖示 校內:2008-07-03公開
    校外:2008-07-03公開
    QR CODE