簡易檢索 / 詳目顯示

研究生: 李後毅
Lee, Hou-Yi
論文名稱: 先導型電弧火箭系統之自主研發
Indigenous Technology Development of a Prototype Arcjet System
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 電弧火箭電能式推進器太空推進器自主研發
外文關鍵詞: Arcjet, Electric Propulsion, Space Propulsion, Thruster
相關次數: 點閱:127下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電能式推進器擁有高比衝值的優點,可大幅提升燃料利用上的效率,為太空推進發展上的一大趨勢,然而我國於電能式推進器的發展技術上仍處於初期萌芽階段,尚未達成熟,對於電能式推進器的性能掌握與細部設計的經驗亦尚屬不足。本論文研究強調實作創新,目的在於建立電能式推進器的初步發展與研究能量、提出其可行性評估,並藉由開發一套由國內首次自主研發的原型1 kW等級電弧火箭系統為契機,於研究過程中確實掌握電弧穩駐、電極開發、電弧火箭設計、關鍵材料與技術,最後測試展現其性能。
    研究初期為簡化處理系統與設計參數上的問題,並考量往後實驗上的便利性,本論文先簡化電弧火箭性能估算模型,以雷利線流觀點將電弧、推進劑與推進器動能間的能量轉換模式,視為理想管道內加熱流體的氣體動力學現象,雖然此模型過於理想化,忽略電離反應、超高溫物理現象、電漿行為、以及能量損失等問題,然而此模型對於初步進行電弧火箭性能的估算上卻是十分便利。
    發展電弧火箭的過程中遭遇許多有關電極材料的問題,包括局部高溫熔損、氧化耗損等問題,本研究透過對於材料特性的分析與測試,並以實際測試其優缺點,成功設計出無氧銅-釷鎢混合電極,經耐久性測試確實證明其可用性。
    本研究藉由理論分析配合實際參數實驗,在電弧電流20 A(相當於1 kW之電弧功率)條件下,以氫氣質量流率15.4、17.9、20.3 mg/s進行大氣環境操作時,可分別得到16.6、18.5、18.8 mN之推力,經估算後比衝值分別為110、105.5、94.5 s,明顯高於在無電弧的冷氣體操作條件下的44.2、48.8、50.5 s;如於真空環境下進行操作,預估可達400 s以上之比衝值,與高於15 %的推進效率。

    The main objective of this study is to study the feasibility of indigenously developing a laboratory-scale arcjet system for space propulsion With its outstanding merits of high specific impulse, the arcjet system can improve the short life-cycle problem caused by rapid consumption of propellant in the traditional chemical propulsion systems. The proposed prototype arcjet system includes arc discharge and power measurement, thrust measurement, propellant supply, cathode cooling, and control and data processing components. Propellant gas was supplied to the arcjet chamber by the propellant supply, and rapidly heated by arc with ohmic heating to further enhance the thrust. The three-channel analysis arcjet model and Rayleigh line flow model were employed to determine the test and design parameters of the arcjet system. From the preliminary test results, the cathode material erosion problem caused by high-temperature heating and oxidation was encountered that significantly lowered the reliability and life span of the arcjet system. Through several tests of different materials, it was found that this problem can be solved by using oxygen-free copper with a thoriated tungsten tip which was oxidation and heat resistant with water cooling. This cathode material can survive throughout the test period.
    With the ground-test conditions of 1 atm back pressure, H2 mass flow rate, and 1 kW input electric arc power level, the correspondent specific impulse was found to be 110. 105.5, and 94.5 s for the hydrogen mass flow rate of 15.4, 17.9, and 20.3 mg/s respectively, which far exceed the specific impulse 45-50 s served only with cold gas. The calculated thruster efficiency was less than 1 % based on atmospheric experimental results, but it is estimated to exceed 15 % thrust efficiency and more than 400 s specific impulse in the vacuum condition.

    摘要 I 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號表 XIII 第一章 簡介 1 1-1 研究動機 1 1-2 電弧火箭的優點 5 1-3 研究目的 6 第二章 電弧火箭原理 8 2-1 電弧放電原理 8 2-1-1 熱電子放射 9 2-1-2 電場放射 10 2-2 電弧結構與不穩定性 13 2-3 電熱式推進系統理論分析 16 第三章 實驗設備與量測方法 22 3-1 電弧火箭系統概念 22 3-2 電弧供應系統 22 3-3 電弧電力量測系統 24 3-3-1 放電電壓量測 25 3-3-2 放電電流量測 25 3-4 推力量測系統 27 3-5 訊號截取系統 30 第四章 電極材料初步測試與結果 32 4-1 鎢類材料 33 4-2 銅類材料 34 4-3 未被採用的其他電極材料 35 4-4 電極材料初步測試用電弧火箭之幾何參數與實驗方法 35 4-5 電極材料初步測試結果 37 4-5-1 純鎢電極 37 4-5-2 銅鎢電極 38 4-5-3 釷鎢電極 39 4-5-4 無氧銅電極 40 4-6 陰極材料選擇上的建議 41 第五章 電弧火箭設計與性能測試方法 42 5-1 電弧火箭幾何參數 42 5-2 推進劑 43 5-2-1電能式推進器之推進劑分析與相關文獻 43 5-2-2 推進劑的選擇與推進劑供應系統 47 5-3 電弧火箭性能測試方法 48 第六章 結果與討論 50 6-1 不同推進劑流量下的電弧火箭性能 50 6-2 電弧火箭性能之比較 54 6-3 電極耐久性測試 56 6-4 電弧火箭可操作區間觀察 57 6-5 氫氣電漿的自然螢光與流場觀察 58 第七章 結論 60 第八章 未來工作 62 參考資料 65 自述 103

    Auweter-Kurtz, M., Glocker, B., Golz, T., Kurtz, H. L., Messerschmid, E. W., Riehle, M., and Zube, D. M., “Arcjet Thruster Development,” Journal of Propulsion and Power, Vol. 12, No. 6, pp. 1077-1083, 1996.
    Bonanos, A. M., Schetz, J. A., and O’Brien, W. F., “Dual-Mode Combustion Experiments with an Integrated Aeroramp- Injector/Plasma-Torch Igniter,” Journal of Propulsion and Power, Vol. 24, No. 2, pp. 267-273, 2008.
    CRC handbook on Chemistry and Physics, version 2008, pp. 12-114, 2008.
    Glocker, B., Schrade, H. O., and Auweter-Kurtz, M., “Performance Calculation of Arc Jet Thrusters- The Three Channel Model,” IEPC-93-187, 23rd Electric Propulsion Conference, Seattle, September, 1993.
    Hutchinson, I. H., Principles of Plasma Diagnostics. Second edition, Cambridge University Press, 2002.
    http://en.wikipedia.org/wiki/Paschen's_law
    John, R. R., Bennett, S., and Connors, J. F., “Arc Jet Engine Performance, Experiment and Theory,” AIAA Journal, Vol. 1, No. 11, pp. 2517, 1963.
    Jahn, R. G., Physics of electric propulsion, McGraw-Hill, New York, 1968.
    John, J. E. A., Gas Dynamics, Allyn and Bacon, Inc., 1984.
    Kakami, A., Koizumi, H., Komurasaki, K., and Arakawa, Y., “Design and Performance of Liquid Propellant Pulsed Plasma Thruster,” Vacuum, Vol. 73, pp. 419-425, 2004.
    Kitagawa, T., Moriwaki, A., Murakami, K., Takita, K., and Masuya, G., “Ignition Characteristics of Methane and Hydrogen Using a Plasma Torch in Supersonic Flow,” Journal of Propulsion and Power, Vol. 19, No. 5, pp. 853-858, 2003.
    Koizumi, H., Kakami, A., Furuta, Y., Komurasaki, K., and Arakawa, Y., “Liquid Propellant Pulsed Plasma Thruster,” 28th Internation Electric Propulsion Conference, Toulouse, France, March 17-21, 2003, IEPC-03-087
    Koizumi, H., Kakami, A., Komurasaki, K., and Arakawa, Y., “A Thrust Stand for Liquid Propellant Pulsed Plasma Thrusters,” ISTS 2002-b-13, 2003.
    Kuninaka, H., Nishiyama, K., Funaki, I., Yamada, T., Shimizu, Y., and Kawaguchi, J., “Powered fight of electron cyclotron resonance ion engines on Hayabusa explorer,” Journal of Propulsion and Power, Vol. 23, No. 3, May-June, 2007.
    Kuriki, K. and Arakawa, Y., Introduction to electric propulsion, University of Tokyo Press, Tokyo, 2003.
    Lichon, P. G. and Sankovic, J. M., “Development and Demonstration of a 600-Second Mission-Average Isp Arcjet,” Journal of Propulsion and Power, Vol. 12, No. 6, pp. 1018-1025, 1996.
    Paschen, F., "Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz,". Annalen der Physik, Vol. 273, No. 5, pp. 69–75, 1889.
    Sankovic, J. M. and Dunning, J. W., Jr, “An Overview of Current NASA Activities in Electric Propulsion Technology,” Proceedings 26th International Electric Propulsion Conference, pp. 19-26, 1999.
    Schonherr, O., “Process of the Badische Anilin- und Sodafabrik for the Fixation of Atmospheric Nitrogen, Elektrotech. Z., Vol. 30, pp. 365-369, 1909.
    Spanjers, G. G., Schilling, J. H., Engleman, S. F., Dulligan, M. J., Bromaghim, D. R., and Johnson, L. K., “Contamination Analysis from the ESEX 26 kW Ammonia Arcjet Flight Experiment,” Proceedings 26th International Electric Propulsion Conference, pp. 249-269, 1999.
    Sutton, G. P. and Biblarz, O., Rocket propulsion elements, John Wiley &Sons, New York, 2001.
    Takita, K., Abe, N., Masuya, G., Ju, Y., “Ignition enhancement by addition of NO and NO2 from a N2/O2 plasma torch in a supersonic flow,” Proceedings of the Combustion Institute, Vol. 31, pp.2489-2496, 2007.
    Zube, D. M., Lichon, P. G., Cohen, D. Lichtin, D. A., Bailey, J. A., and Chilelli, N. V., “Initial On-Orbit Performance of Hydrazine Arcjets on A2100 Satellites,” AIAA Paper 99-2272, 1999.
    鳳誠三郎、関口忠、河野照哉, “電離気体論”,社団法人電気学会,1969.
    関口忠、一丸節夫, “プラズマ物性工学”,オーム社,1973.
    廖財昌, “雜訊干擾及防止對策”,全華科技圖書股份有限公司,1988.
    山田諄, “講座:プラズマ実験入門III プラズマの発光からプラズマを知る”,プラズマ・核融合学会誌,第69巻,第7号,pp.784-792,1993年7月.
    桜木俊一、高尻雅之, “移行式アークジェットの運動量損失に関する考察”,日本機械学会論文集(B編),第60巻,第573号,pp.112-118,1994.
    李銀安, “受控熱核融合”,牛頓出版股份有限公司,1996.
    荻原和彦、細田聡史、木村逸郎、国中均、都木恭一郎、栗木恭一, “可視化実験による低電力DCアークジェット放電部現象の考察”,日本航空宇宙学会論文集,Vol. 48, No. 559, pp. 250-256, 2000.
    上野智行, “抵抗溶接におけるタングステン/モリブデン系電極材料の性能”, 溶接技術,Vol. 50,12月号,2002.
    プラズマ・核融合学会編, “プラズマの生成と診断─応用への道─”,コロナ社,東京,2004.
    プラズマ・核融合学会編, “プラズマの基礎と応用”,コロナ社,東京,2006.
    八坂保能, “放電プラズマ工学”,森北出版株式会社,2007.
    三好誠, “Arを推進剤として用いるイオンエンジンの開発”,日本九州大学先端エネルギー理工学専攻修士論文,2007.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE