| 研究生: |
趙建智 Chao, Chien-Chih |
|---|---|
| 論文名稱: |
電子束熔煉法加熱高純度金屬之熔池數值分析 Numerical Analysis on Molten Pool of High Purity Metals by Electron Beam Melting |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 數值模擬 、電子束熔煉 、相變化 、馬蘭戈尼效應 、蒸發 、鈷 、鉭 |
| 外文關鍵詞: | numerical simulation, electron beam melting, Marangoni force, cobalt, tantalum |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文藉由套裝軟體Ansys Fluent建立暫態二維軸對稱模型,模擬固定電子束直接加熱純鈷、純鉭金屬,材料邊界藉由水冷銅坩鍋散熱,並且考慮熔池表面張力效應(馬蘭戈尼效應)、蒸發熱損失。探討不同電子束能量、電子束半徑,對金屬熔池形狀、表面溫度以及純鈷、純鉭金屬蒸發熱損失之影響。
其模擬結果顯示,在熔煉純鈷金屬過程中,其熔池表面最高溫度、熔池表面平均溫度在短時間內會達到穩定狀態,且熔池主要受馬蘭戈尼效應之影響,產生一較寬、較淺之熔池形狀。
固定電子束半徑,增加電子束能量進行熔煉,將會增加表面之輻射熱損失及蒸發熱損失,不僅增加純鈷金屬之損耗,亦會浪費能量,降低熔煉效率。
固定電子束能量,以較大之電子束半徑進行熔煉,可以使熔池表面最高溫度較小、有效地增加熔池寬度、同時減少純鈷金屬之蒸發熱損失,故應以電子束半徑較大者進行電子束熔煉。
以較大電子束半徑進行純鉭金屬之熔煉,雖可降低熔池表面過熱之問題,卻無法使熔池之寬度較大,故必須再增加電子束能量進行熔煉,並且再提高水冷銅坩鍋之冷卻效果。
In this study, a numerical simulation model is developed to investigate the flow and heat transfer characteristics of molten pool for pure cobalt and tantalum during electron beam melting (EBM). This model also considers the coupled effects of buoyancy and Marangoni forces, and radiation and evaporation losses. Radiation and evaporation losses of cobalt during EBM increase with the increase of beam power, while they decrease with the increase of beam radius. Furthermore, the increase of beam radius will decrease the temperature of pool surface and will make pool wider. Based on these results, it is recommended to use larger beam radius during EBM. It is not efficient to use the parameters set in this study to melt tantalum. In addition to larger beam radius, larger beam power and enhanced water cooling are needed in the future research.
1. 伍秀菁, 汪若文, 林美吟, “真空技術與應用,” 行政院國家科學委員會精密儀器發展中心, 2001.
2. Choi, G. S., Lim, J. W., Munirathnam, N. R., Kim, I. H. and Kim, J. S., “Preparation of 5N grade tantalum by electron beam melting,” Journal of Alloys and Compounds, Vol. 469, pp. 298-303, 2009.
3. Bellot, J. P., Ablitzer, D. and Hess, E., "Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys," Metallurgical and Materials Transactions B, Vol. 31, pp. 845-854, 2000.
4. Powell, A., Pal, U., Van Den Avyle, J., Damkroger, B. and Szekely, J., "Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys," Metallurgical and Materials Transactions B, Vol. 28B, pp. 1227-1239, 1997.
5. Tan, Y., Wen, S., Shi, S., Jiang, D., Dong, W. and Guo, X., “Numerical simulation for parameter optimization of silicon purification by electron beam melting,” Vacuum, Vol. 95, pp. 18-24, 2013.
6. 楊邦朝, 崔紅玲, “濺射靶材的製備與應用,” 真空, 第3期, 2001
7. 劉喜海, 徐成海, 鄭險峰, “真空熔煉,” 化學工業出版社, pp. 196-233, 2013.
8. Tripp, D. W., “Modelling power transfer in electron beam heating of cylinders,” PhD Thesis, The University of British Columbia, Vancouver, 1994.
9. Lee, P. D., Quested, P. N. and McLean, M., "Modelling of Marangoni effects in electron beam melting," Philosophical Transactions of the Royal Society A, Vol. 356, pp. 1027-1044, 1998.
10. Vutova, K. and Mladenov, G., "Computer simulation of the heat transfer during electron beam melting and refining," Vacuum, Vol.53, pp. 87-91, 1999.
11. Ritchie, M., Cockcroft, S. L., Mitchell, A., Lee, P. D. and Wang, T., “X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: Part I. Experimental setup and processing of spectra,” Metallurgical and Materials Transactions A, Vol. 34, pp. 851-861, 2003.
12. Ritchie, M., Lee, P. D., Mitchell, A., Cockcroft, S. L. and Wang, T., “X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: Part II. Evaporative processes and simulation,” Metallurgical and Materials Transactions A, Vol. 34, pp. 863-877, 2003.
13. Suzuki, K. I. and Watakabe, S., "Melting and precision casting of Ti-6Al-4V alloy by use of electron beam furnace," Metals and Materials International, Vol. 9, pp. 359-367, 2003.
14. 韓明臣, 周義剛, 趙鐵夫, 張英明, 周廉, “電子束冷床熔煉參數對熔池表面溫度的影響,” 稀有金屬, 第30卷, 55-59, 2006
15. Meng, T., “Factors influencing the fluid flow and heat transfer in electron beam melting of Ti-6Al-4V,” Master’s Thesis, The University of British Columbia, Vancouver, 2009.
16. Jiang, D. C., Tan, Y., Shi, S., Xu, Q., Dong, W., Gu, Z. and Zou, R. X., “Research on new method of electron beam candle melting used for removal of P from molten Si,” Materials Research Innovations, Vol. 15, pp. 406-409, 2011.
17. Vutova, K. and Donchev, V., “Electron beam melting and refining of metals: Computational modeling and optimization,” Materials, Vol. 6, pp. 4626-4640, 2013.
18. Zhang, Z., “Modeling of Al evaporation and Marangoni Flow in electron beam button melting of Ti-6Al-4V,” Master’s Thesis, The University of British Columbia, Vancouver, 2013.
19. 朱承先, “矩形潛熱式熱控裝置之熔解熱傳研究,” 博士論文, 國立成功大學機械系, 1994.
20. ANSYS, “Ansys Fluent. 14.0 User's Manual,” ANSYS inc, 2011.
21. Voller, V. R. and Prakash, C., “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, Vol. 30, pp. 1709-1719, 1987.
22. Utke, I., Hoffmann, P. and Melngailis, J., “Gas-assisted focused electron beam and ion beam processing and fabrication,” Journal of Vacuum Science & Technology B, Vol. 26, pp. 197-1276, 2008.
23. L'vov, B. V., “Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology,” Springer, Vol. 7, pp. 35-38, 2007.
24. Srinivasan, J. and Basu, B., “A numerical study of thermocapillary flow in a rectangular cavity during laser melting,” International journal of heat and mass transfer, Vol. 29, pp. 563-572, 1986.
25. Chen, J. C. and Huang, Y. C., “Thermocapillary flows of surface melting due to a moving heat flux,” International journal of heat and mass transfer, Vol. 34, pp. 663-671, 1991.
26. Westerberg, K. W., McClelland, M. A. and Finlayson, B. A., “Finite element analysis of flow, heat transfer, and free interfaces in an electron beam vaporization system for metals,” International journal for numerical methods in fluids, Vol. 26, pp. 637-655, 1998.
27. Mills, K. C., “Recommended values of thermophysical properties for selected commercial alloys,” Woodhead Publishing, 2002.
28. Chase, M. W., “NIST-JANAF thermochemical tables,” 1998
29. Yaws, C. L., “Handbook of properties of the chemical elements,” Norwich, N.Y. : Knovel, c2011., 2011.
30. Powell and Liley, P. E., "Thermal conductivity of the elements: A comprehensive review," Journal of Physical and Chemical Reference Data, Vol. 3, pp. I–1 to I–796, 1974.
31. Paradis, P. F., Ishikawa, T. and Yoda, S., “Surface tension and viscosity of liquid and undercooled tantalum measured by a containerless method,” Journal of applied physics, Vol. 97, 053506, 2005.
32. Rai, R., Elmer, J. W., Palmer, T. A. and DebRoy, T., “Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium,” Journal of physics D: Applied physics, Vol. 40, 5753, 2007.
33. Cohen, E. R., Lide, D. R. and Trigg, G. L., editors., “AlP physics desk reference, 3rd edition,” New York Springer-Verlag New York, Inc., 2003.
34. Edwards, J. W., Johnston, H. L., and Blackburn, P. E., “Vapor pressure of inorganic substances. IV. tantalum between 2624 and 2943° K. 1,” Journal of the American Chemical Society, Vol. 73, pp. 172-174, 1951.
35. Edwards, J. W., Johnston, H. L., and Ditmars, W. E., “The vapor pressures of inorganic substances. VII. iron between 1356° K. and 1519° K. and cobalt between 1363° K. and 1522° K 1.,” Journal of the American Chemical Society, Vol. 73, pp. 4729-4732,1951.
36. Assael, M. J., Armyra, I. J., Brillo, J., Stankus, S. V., Wu, J., and Wakeham, W. A., “Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc.” Journal of Physical and Chemical Reference Data, Vol. 41, 033101, 2012.
37. ANSYS, “Ansys Fluent. 14.0 Theory Guide,” ANSYS inc, 2011.
38. Chakraborty, N. and Chakraborty, S., “Modelling of turbulent molten pool convection in laser welding of a copper–nickel dissimilar couple,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1805-1822, 2007.
39. 葉長泰, “矩形容器內冰熔解熱流現象影響之研究─高萊利數之結果,” 碩士論文, 國立成功大學機械系, 1997.
40. Bertrand, O., Binet, B., Combeau, H., Couturier, S., Delannoy, Y., Gobin, D., ... and Vieira, G., “Melting driven by natural convection A comparison exercise: first results,” International Journal of Thermal sciences, Vol. 38, pp. 5-26, 1999.
41. Lei, Y. P., Murakawa, H., Shi, Y. W. and Li, X. Y., “Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Computational Materials Science, Vol. 21, pp. 276-290, 2001.
42. Bergman, T. L. and Webb, B. W., “Simulation of pure metal melting with buoyancy and surface tension forces in the liquid phase,” International journal of heat and mass transfer, Vol. 33, pp. 139-149, 1990.