簡易檢索 / 詳目顯示

研究生: 黃倢妤
Huang, Chieh-yu
論文名稱: 早期聲音刺激加速幼鼠大腦血管生成和反射發育
Neonatal sound exposure accelerates cerebral vascularization and reflex development in rats
指導教授: 潘偉豐
Poon, Wai-Fung Paul
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 88
中文關鍵詞: 反射發育血管新生耳蝸核
外文關鍵詞: cochlear nucleus, reflex, vascularization
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 之前的研究顯示多元化的環境可誘發鼠腦神經元及血管密度增加。此種環境包含多種感覺刺激。而專一特定的感覺刺激是否能導致這種變化仍不清楚。我們有興趣探討長期聲音刺激與初生幼鼠腦幹聽覺區血管結構及大腦發育時期之相關性。利用初生幼鼠分別給予為期兩周到4周的單音(4 kHz,65 dB SPL)刺激後,進行腦組織切片、組織染色及影像分析。此外,在聲音刺激期間,每天攝影紀錄幼鼠神經反射行為。結果顯示聲音刺激後,腹側耳蝸核在特定音頻區大血管管徑及微血管密度增加,和文獻中腹側耳蝸核細胞對低頻聲音持續放電反應相關。此聲音引起的血管可塑性改變在出生後兩周(耳道打開後約3天)最明顯,到第四周趨於平緩。另一方面,聲音刺激會使初生幼鼠的神經反射行為提早一到兩天。此聲音引起的神經反射成熟是出現在耳道打開前。總合以上結果證明,利用長期聲音此種專一特定的感覺刺激可誘發初生幼鼠腦幹聽覺區血管新生及重塑,以及加速大腦神經反射行為的發育。

    Earlier experiments with young animals raised in a complex environment led to increase in both neural and vascular densities in the brain. Whether sensory stimulation alone can cause these changes remains unclear. In this study, we aimed to determine the effect of sound over-stimulation on vascularization at the brainstem auditory structures, and the time course of the sound effect on brain development in the rat pups. The experimental rats reared with their nursing mothers were divided into 3 groups each receiving sound exposure (4 kHz continuous tone, 65 dB SPL, 10 hrs/night) for either 2, 3 or 4 weeks. During the postnatal 3 weeks, water intakes of mother rats and rat pups were recorded on a daily basis together with the appearance of five reflexes (i.e., righting reflex, cliff avoidance, negative geotaxis, vibrissae placing and auditory startle) and developmental landmarks. TV-cinematography recorded the reflex movements for off-line analysis. After sound exposure, animals were then sacrificed and their brainstems processed histologically for image analysis of vascularization. Cochlear nucleus (CN) of the auditory brainstem in exposed rats displayed an increase in vascularization, both in terms of micro- and macro-vessels, particularly to the ventral subdivisions which are known to respond preferentially to steady tone stimuli. And vascular changes were largest on P14 or soon after ear opening. In developmental studies, sound exposure accelerated the emergence of all the reflexes we examined by 1 to 2 days. Findings represented the first evidence that prolonged acoustic stimulation increases vascularization of brainstem auditory structures and accelerates the development of reflexes in young animals even before the time of ear opening.

    1. Introduction 1.1 Brain plasticity in young animals …………………………1 1.1.1 Experience dependence …………………………………1 1.1.2 Brain vascularization in young animals …………………3 1.1.2.1 Factors affecting cerebral blood flow …………………3 1.1.2.2 Processes underlying normal vascularization …………5 1.1.2.3 Factors affecting vascularization ………………………5 1.2 Specific aim I of study ……………………………………6 1.2.1 Hypothesis of the morphometric study ………………… 6 1.2.2 Why choosing rat auditory system for study …………… 6 1.3 The auditory brainstem …………………………………… 7 1.3.1 Cochlear nucleus (CN) …………………………………7 1.3.2 Lateral superior olive (LSO) …………………………… 8 1.4 Factors affecting growth and development ……………… 9 1.5 Specific aim II of study ……………………………………10 1.5.1 Hypothesis of the developmental study…………………10 1.5.2 Why choosing the five reflexes for study ………………10 1.5.3 Developmental time course of the five reflexes………… 11 2. Materials and Methods 2.1 Animals …………………………………………………12 2.2 Sound exposure …………………………………………12 2.2.1 Sound stimulus………………………………………… 12 2.2.2 Exposure paradigm …………………………………… 12 2.3 Histological assessment of vascularization ………………13 2.3.1 Histology ……………………………………………… 13 2.3.1.1 Paraffin section ………………………………………13 2.3.1.2 Frozen section ………………………………………14 2.3.2 Image processing ………………………………………14 2.3.2.1 Determination of nuclear subdivisions ……………… 14 2.3.2.2 Extraction of vessel lumens ………………………… 14 2.3.2.3 3D reconstruction of blood vessels …………………15 2.4 Assessment of growth and development …………………15 2.4.1 Measurement of diet intake ……………………………15 2.4.2 Measurement of physical changes …………………… 16 2.4.3 Behavioral assessment of reflexes …………………… 16 2.4.3.1 Video recording and analyses ………………………17 2.5 Statistical analyses ………………………………………17 2.5.1 Correction for tissue shrinkage in paraffin section ………………………………………………………………17 2.5.2 Wilcoxon rank sum test ………………………………18 2.5.3 Student’s t-test ……………………………………… 18 3. Results 3.1 Sound exposure accelerated vascularization ……………19 3.1.1 Section area and shrinkage ratio of VCN and LSO increased with sound ………………………………………………………………19 3.1.2 Macro-vessels of CN increased in size with sound ………………………………………………………………19 3.1.3 Micro-vessels density of CN increased with sound ………………………………………………………………20 3.1.4 Micro-vessels density of AVCN increased at low frequency region ………………………………………………………………20 3.1.5 Micro-vessels density of other brainstem auditory nuclei increased with sound ………………………………………………………………20 3.1.6 Microvascular changes in CN occurred at capillaries ………………………………………………………………21 3.1.7 Sound exposure accelerated vascular differentiation ………………………………………………………………21 3.2 Sound exposure accelerated reflex development ……… 21 3.2.1 Sound exposure accelerated growth ………………… 21 3.2.2 Sound exposure accelerated reflex development………22 4. Discussion 4.1 Vascular remodeling was activity-driven ……………… 23 4.2 Nature of sound-induced vascular changes ………………24 4.3 Time window of sound-induced vascular changes ………25 4.4 The surprisingly early effect of sound exposure on reflex development ………………………………………………………………25 4.5 Effects of sound exposure on growth and development ………………………………………………………………26 5. Conclusion ………………………………………………28 6. References ………………………………………………29 Table ………………………………………………………39 Figures ………………………………………………………41 Appendix ……………………………………………………67 Acknowledgments……………………………………………75

    Andermann, ML., Ritt, J., Neimark, MA. And Moore, CI. Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli. Neuron 42: 451-463, 2004.
    Altman, J. and Sudarshan, K. Postnatal development of locomotion in the laboratory rat. Ani Behav 23: 896-920, 1975.
    Armitage, JA., Taylor, PD. and Poston, L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565: 3-8, 2005.
    Bennett, EL., Diamond, MC., Krech, D. and Rosenzweig, MR. Chemical and anatomical plasticity brain. Science 146: 610-619, 1964.
    Black, JE., Sirevaag, AM. and Greenough, WT. Complex experience promotes capillary formation in young rat visual cortex. Neurosci Lett 83: 351-355, 1987.
    Black, JE., Isaacs, KR., Anderson, BJ., Alcantara, AA. and Greenough, WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87: 5568-5572, 1990.
    Bongiovanni, KD., Depeters, EJ. and Van Eenennaam, AL. Neonatal growth rate and development of mice raised on milk transgenically enriched with omega-3 fatty acids. Pediatr Res 62: 412-416, 2007.
    Bourk, TR., Mielcarz, JP. And Norris, BE. Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hear Res 4: 215-241, 1981
    Brawer, JR., Morest, DK. And Kane, EC. The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251-300, 1974.
    Bredy, TW., Grant, RJ., Champagne, DL. and Meaney, MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18: 2903-2909, 2003.
    Burns, WA. Thick Sections: Technique and Applications. In: Diagnostic Electron Microscopy. Chap 4: 141-166, edited by Trump, BF. and Jones, RJ., New York: John Wiley and Sons, 1978.
    Burow, A., Day, HE. and Campeau, S. A detailed characterization of loud noise stress: Intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res 1062: 63-73, 2005.
    Campeau, S. and Watson, SJ. Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9: 577-588, 1997.
    Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-395, 2000.
    Carmeliet, P. and Jain, RK. Angiogenesis in cancer and other diseases. Nature 407: 249-257, 2000.
    Carmeliet, P. Manipulating angiogenesis in medicine. J Intern Med 255: 538-561, 2004.
    Casella, GT., Marcillo, A., Bunge, MB. and Wood, PM. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol 173: 63-76, 2002.
    Champagne, FA., Curley, JP., Keverne, EB. and Bateson, PP. Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav 91: 325-334, 2007.
    Chiu, TW., Poon, PWF., Yew, DTW and Chan, WY. Long-term changes of response in the inferior colliculus of senescence accelerated mice after early sound exposure. J Neurol Sci 216: 143-151, 2003.
    Cox, SB., Woolsey, TA. and Rovainen, CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13: 899-913, 1993.
    Davis, M., Gendelman, DS., Tischler, MD. and Gendelman, PM. A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2: 791-805, 1982.
    de Villers-Sidani, E., Chang, EF., Bao, S. and Merzenich, MM. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J Neurosci 27: 180-189, 2007.
    Devor, A., Dunn, AK., Andermann. ML., Ulbert, I., Boas, DA. and Dale, AM. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39: 353-359, 2003.
    Edvinsson, L., MacKenzie, ET. and McCulloch, J. Cerebral Blood Flow and Metabolism. Raven Press, New York, 1993.
    Feng, JJ., Kuwada, S., Ostapoff, EM., Batra, R. and Morest, DK. A physiological and structural study of neuron types in the cochlear nucleus. I. Intracellular responses to acoustic stimulation and current injection. J Comp Neurol 346: 1-18, 1994.
    Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27-31, 1995.
    Greenough, WT., Volkmar, FR. and Juraska, JM. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp Neurol 41: 371-378, 1973.
    Greenough, WT., Hwang, HM. and Gorman, C. Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc Natl Acad Sci U S A 82: 4549-4552, 1985.
    Grothe, B., Vater, M., Casseday, JH. and Covey, E. Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar. Proc Natl Acad Sci U S A 89: 5108-5112, 1992.
    Hanahan, D. A flanking attack on cancer. Nat Med 4: 13-14, 1998.
    Heil, M., Eitenmuller, I., Schmitz-Rixen, T. and Schaper, W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10: 45-55, 2006.
    Hensch, TK. Critical period regulation. Annu Rev Neurosci 27: 549-579, 2004.
    Hoffman, JR., Greenberg, JH., Furuya, D., Craik, RL., Fanelli, P., Breslow, S., Sheehan, S., Ketschek, A., Damkaoutis, C., Reivich, M. and Hand, P. Rats recovering from unilateral barrel-cortex ischemia are capable of completing a whisker-dependent task using only their affected whiskers. Brain Res 965: 91-99, 2003.
    Hooks, BM. and Chen, C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56: 312-326, 2007.
    Hutson, KA. and Masterton, RB. The sensory contribution of a single vibrissa's cortical barrel. J Neurophysiol 56: 1196-1223, 1986.
    Iso, H., Simoda, S. and Matsuyama, T. Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice. Behav Brain Res 179: 90-98, 2007.
    Johansson, BB. and Ohlsson, AL. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol 139: 322-327, 1996.
    Joris, PX. and Yin, TC. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73: 1043- 1062, 1995.
    Kelly, JB., Liscum, A., van Adel, B. and Ito, M. Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus.
    Hear Res 116: 43-54, 1998.
    Kerr, MA. and Belluscio, L. Olfactory experience accelerates glomerular refinement in the mammalian olfactory bulb. Nat Neurosci 9: 484-486, 2006.
    Kloth, LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds 4: 23-44, 2005.
    Kobata, R., Tsukahara, H., Ohshima, Y., Ohta, N., Tokuriki, S., Tamura, S. and Mayumi, M. High levels of growth factors in human breast milk. Early Hum Dev 84: 67-69, 2008.
    Landers, MS and Sullivan, RM. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex. J Neurosci 19: 5131-5137, 1999.
    Leggio, MG., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F. and Petrosini, L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163: 78-90, 2005.
    Lendvai, B., Stern, EA., Chen, B. and Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404: 876-881, 2000.
    Lenoir, M., Shnerson, A. and Pujol, R. Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol (Berl) 160: 253-262, 1980.
    Leybaert, L. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab 25: 2-16, 2005.
    Liu, D., Diorio, J., Day, JC., Francis, DD. and Meaney, MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3: 799-806, 2000.
    Maravall, M., Koh, IY., Lindquist, WB. and Svoboda, K. Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. Cereb Cortex 14: 655-664, 2004.
    Marks, CA., Cheng, K., Cummings, DM. and Belluscio, L. Activity-dependent plasticity in the olfactory intrabulbar map. J Neurosci 26: 11257-11266, 2006.
    Mito, T., Konomi, H., Houdou, S. and Takashima, S. Immunohistochemical study of the vasculature in the developing brain. Pediatr Neurol 7: 18-22, 1991.
    Moore, CI. and Andermann, ML. The vibrissa resonance hypothesis. In: Somatosensory plasticity, edited by Ebner, FF., CRC Press, Chap 2: 21-60, 2005.
    Moore, JK., Perazzo, LM. and Braun, A. Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 87: 21-31, 1995.
    Moore, JK. and Linthicum, FH., Jr. The human auditory system: a timeline of development. Int J Audiol 46: 460-478, 2007.
    Nakahara, H., Zhang, LI. and Merzenich, MM. Specialization of primary auditory cortex processing by sound exposure in the "critical period". Proc Natl Acad Sci U S A 101: 7170-7174, 2004.
    Oertel, D., Wu, SH., Garb, MW. And Dizack, C. Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295: 136-154, 1990.
    Ogunshola, OO., Stewart, WB., Mihalcik, V., Solli, T., Madri, JA. and Ment, LR. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Dev Brain Res 119: 139-153, 2000.
    Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., Katoh, A. and Imabayashi, E. Functional anatomy of musical perception in musicians. Cereb Cortex 11: 754-760, 2001.
    Pass, D. and Freeth, G. The rat. ANZCCART News 6: 1-4, 1993.
    Paxinos, G. and Watson, C. The Rat Brain in Stereotaxic Coordinates. Fourth Edition. Academic Press, New York, 1998.
    Poon, PWF. and Chen, X. Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res 585: 391-394, 1992.
    Poon, PWF., Chen, X. and Hwang, JC. Basic determinants for FM responses in the inferior colliculus of rats. Exp Brain Res 83: 598-606, 1991.
    Purves, D., Riddle, DR., White, LE. and Gutierrez-Ospina, G. Neural activity and the development of the somatic sensory system. Curr Opin Neurobiol 4: 120-123, 1994.
    Rhode, WS. And Smith, PH. Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56: 261-286, 1986a.
    Rhode, WS. And Smith, PH. Physiological studies on neurons in the dorsal cochlear nucleus of cat. J Neurophysiol 56: 287-307, 1986b.
    Riddle, DR., Gutierrez, G., Zheng, D., White, LE., Richards, A. and Purves, D. Differential metabolic and electrical activity in the somatic sensory cortex of juvenile and adult rats. J Neurosci 13: 4193-4213, 1993.
    Risau, W. and Flamme, I. Vasculogenesis. Annu Rev Cell Dev Biol 11: 73-91, 1995.
    Risau, W. Mechanisms of angiogenesis. Nature 386: 671-674, 1997.
    Ryugo, DK., Haenggeli, CA. and Doucet, JR. Multimodal inputs to the granule cell domain of the cochlear nucleus. Exp Brain Res 153: 477-485, 2003.
    Salvati, S., Attorri, L., Avellino, C., Di Biase, A. and Sanchez, M. Diet, lipids and brain development. Dev Neurosci 22: 481-487, 2000.
    Sambraus, HH. and Hecker, PA. [Effect of sound on milk production in cows]. Berl Munch Tierarztl Wochenschr 98: 298-302, 1985.
    Saste, MD., Carver, JD., Stockard, JE., Benford, VJ., Chen, LT. and Phelps, CP. Maternal diet fatty acid composition affects neurodevelopment in rat pups. J Nutr 128: 740-743, 1998.
    Schlaug, G., Jancke, L., Huang, Y. and Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267: 699-701, 1995.
    Sengpiel, F., Stawinski, P. and Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2: 727-732, 1999.
    Sengpiel, F. The critical period. Curr Biol 17: R742-743, 2007.
    Sirevaag, AM. and Greenough, WT. Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res 424: 320-332, 1987.
    Sirevaag, AM., Black, JE., Shafron, D. and Greenough, WT. Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats. Brain Res 471: 299-304, 1988
    Smart, JL. and Dobbing, J. Vulnerability of developing brain. II. Effects of early nutritional deprivation on reflex ontogeny and development of behaviour in the rat. Brain Res 28: 85-95, 1971.
    Smart, JL., Da-Silva, VA., Malheiros, LR., Paumgartten, FJ. and Massey RF. Epidermal growth factor advances some aspects of development but retards others in both rats and hamsters. J Dev Physiol 11: 153-158, 1989.
    Smith, PH. and Rhode, WS. Electron microscopic features of physiologically characterized, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus. J Comp Neurol 237: 127-143, 1985.
    Smith, PH. and Rhode, WS. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266: 360-375, 1987.
    Sullivan, RM., Landers, MS., Flemming, J., Vaught, C., Young, TA. and Jonathan, Polan, H. Characterizing the functional significance of the neonatal rat vibrissae prior to the onset of whisking. Somatosens Mot Res 20: 157-162, 2003.
    Swain, RA., Harris, AB., Wiener, EC., Dutka, MV., Morris, HD., Theien, BE., Konda, S., Engberg, K., Lauterbur, PC. and Greenough, WT. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117: 1037-1046, 2003.
    Tollin, DJ. And Yin, TC. The coding of spatial location by single units in the lateral superior olive of the cat. II. The determinants of spatial receptive fields in azimuth. J Neurosci 22: 1468-1479, 2002.
    Trachtenberg, JT. and Stryker, MP. Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21: 3476-3482, 2001.
    Troiani, D., Ferraresi, A. and Manni, E. Head-body righting reflex from the supine position and preparatory eye movements. Acta Otolaryngol 125: 499-502, 2005.
    Whitaker, VR., Cui, L., Miller, S., Yu, SP. and Wei, L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab 27: 57-68, 2007.
    Wiegman, PJ., Barry, WL., McPherson, JA., McNamara, CA., Gimple, LW., Sanders, JM., Bishop, GG., Powers, ER., Ragosta, M., Owens, GK. and Sarembock, IJ. All-trans-retinoic acid limits restenosis after balloon angioplasty in the focally atherosclerotic rabbit : a favorable effect on vessel remodeling. Arterioscler Thromb Vasc Biol 20: 89-95, 2000.
    Wiesel, TN. and Hubel, DH. Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003-1017, 1963.
    Young, ED and Brownell, WE. Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39: 282–300, 1976.
    Young, ED and Oertel, D. The cochlear nucleus. In: The Synaptic Organization of the brain. Edited by Shepherd, GM. Oxford University Press, New York, chapter 4, p125-163, 2003.
    Zhang, LI., Bao, S. and Merzenich MM. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4: 1123-1130, 2001.
    Zheng, D., LaMantia, AS. and Purves, D. Specialized vascularization of the primate visual cortex. J Neurosci 11: 2622-2629, 1991.

    下載圖示 校內:2010-08-07公開
    校外:2013-08-07公開
    QR CODE