簡易檢索 / 詳目顯示

研究生: 張哲嘉
Chang, Che-Chia
論文名稱: 雙晶氧化銅奈米線電阻式開關特性之研究
Investigation on Resistive Switching Behaviors of Bi-Crystal CuO Nanowires
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 電阻式開關氧化銅奈米線
外文關鍵詞: Resistive switching, CuO nanowires
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用雙晶氧化銅奈米線製作電阻式開關元件,並量測出兩種不同元件型態,分別為單穩態電阻式開關及雙穩態電阻式開關,其中雙穩態電阻式開關即電阻式記憶體。為觀察該二種元件型態,吾人首先利用電子束微影技術和PECS系統為元件鍍製不同厚度之電極,並於室溫量測元件,而該元件結構為金屬/氧化銅奈米線/金屬之電容式結構。當該電容結構之金屬電極厚度≦60 nm時,元件特性呈單穩態電阻式開關(threshold resistive switching);然而當電極厚度達100 nm時,元件特性便呈雙穩態電阻式開關(memory resistive switching)。此外,若對特性呈單穩態電阻式開關之元件於量測的過程中降低通過元件之限制電流大小,自10-6A降至10-7A,其元件特性便轉變為雙穩態電阻式開關。而這些有趣的現象和RS元件內部熱消散的能力有關,不論於元件操作時提高限制電流大小或是減少元件電極厚度,皆造成無法有效消散電流通過元件所產生的焦耳熱,進而使元件內部的導電通道無法穩定存在。為更進一步探討導電通道狀態對於元件特性的影響,吾人便對具單穩態特性之元件施予脈衝,脈衝電壓大小為2 V,脈衝持續時間為1至10 msec,元件特性由單穩態轉換為雙穩態;接著吾人對元件低阻態(ON state)量測低溫電性,其結果顯示導電通道的導電特性如同金屬。該現象意味著施予脈衝能夠聚集氧空缺於導電通道斷裂區域,並形成新的通道,而上述的工作不僅提供導電通道形成機制,也提出單穩態和雙穩態電阻式開關間之關係。最後吾人利用FIB將RS元件製作成TEM試片,試圖找尋元件內部所產生的通道。

    This study investigated two types of reversible resistive switching behaviors in bi-crystal CuO nanowires. One is mono-stable resistive switching (threshold resistive switching) behavior, and the other is bi-stable resistive switching (memory resistive switching). First, We utilized electron beam lithography technique and PECS deposition system to fabricate single nanowire reversible resistive switching device. The single NW RS behaviors were further investigated by varying electrode thickness in the metal/CuO/metal capacitor structure at RT. The threshold RS behavior dominated with electrode thickness ≦ 60 nm, while the memory RS behavior dominated when the electrode thickness was around 100 nm. In addition, the phenomenon of memory RS was also observed for the device with electrode thickness = 30 nm by decreasing the current compliance value from 10-6 A to 10-7 A. These interesting phenomena might be related to heat dissipation. The thinner the electrodes, the lesser the dissipation rate of Joule heat. Thus, this resulted in less stable conductive channels. Moreover, we also observed that memory RS behavior recovers from threshold RS by applying a pulse at 2V for a duration of 1 to 10 msec, and the metallic behavior existed in ON state of RS device by temperature dependent I-V measurement. The phenomenon suggests that oxygen ions would migrate in electric field and form new conductive channels at the original broken channel in threshold RS device. These work provided more understanding on the interplay between threshold RS and memory RS effects. Finally, we tried to discover the conductive channels at RS device by technique of FIB and TEM.

    摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機和目的 2 第二章 理論基礎 3 2-1 電阻式開關 3 2-1.1 雙穩態電阻式開關 3 2-1.2 雙穩態電阻式開關之操作 4 2-1.3 單穩態電阻式開關 7 2-1.4 單穩態電阻式開關之操作 7 2-2 電阻轉換機制 9 2-2.1 熱效應對電阻式開關影響 9 2-2.2電遷移效應對電阻式開關影響 12 2-2.3離子效應對電阻式開關影響 13 2-3導電通道觀察相關文獻回顧 16 2-3.1陰離子導電通道元件 16 2-3.2陽離子導電通道元件 19 2-4單穩態電阻式開關相關文獻回顧 22 2-4.1熱效應對單穩態電阻式開關影響 22 2-4.2脈衝對單穩態電阻式開關影響 28 2-4.3化學劑量比對單穩態電阻式開關影響 31 2-5奈米結構電阻式記憶體相關文獻回顧 32 2-5.1奈米點電阻式記憶體 32 2-5.2奈米線電阻式記憶體 32 2-6 CuO電阻式記憶體研究 36 第三章 實驗方法與步驟 38 3-1實驗材料 38 3-1.1靶材 38 3-1.2氧化銅奈米線成長之基材 38 3-1.3實驗相關藥品與耗材 38 3-2實驗設備 39 3-2.1熱處理系統 39 3-2.2電子束微影系統 39 3-2.3 PECS電極蒸鍍系統 39 3-3 實驗流程 40 3-3.1 試片清洗 40 3-3.2 氧化銅奈米線製程 40 3-3.3 微米級電性量測電極製程 41 3-3.4 奈米線滴定 42 3-3.5 電子束微影製程 42 3-3.6 電極鍍製 42 3-4 分析儀器 46 3-4.1 掃描式電子顯微鏡 46 3-4.2 穿透式電子顯微鏡 46 3-4.3 原子力顯微鏡 47 3-4.4 低掠角X光繞射分析儀 47 3-4.5 X光光電子能譜儀 48 3-4.6 精密半導體參數分析儀 48 第四章 結果與討論 50 4-1 CuO奈米線特性分析 50 4-1.1 奈米線形貌分析 51 4-1.2 微結構分析 56 4-1.3 組成分析 61 4-1.4 CuO奈米線成長機制討論 67 4-2 電阻式開關元件試片命名 68 4-3 RS元件電性量測 70 4-3.1 單晶及雙晶CuO奈米線電性 70 4-3.2 單根CuO奈米線RS元件量測 73 4-3.3 單根CuO奈米線RS元件型態轉換 79 4-3.4 氧空缺導電通道探討 86 4-4 RS元件內部微結構觀察 90 第五章 結論 93 第六章 參考文獻 94

    [1] J. W. Park, K. Jung, et al. (2006). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24(5).
    [2] Kim, B. J. Choi, et al. (2009). Journal of The Electrochemical Society 56(12).
    [3] H. Schroeder, D. S. Jeong, et al. (2007). Microelectronic Engineering 84(9-10).
    [4] Chae, J. S. Lee, et al. (2008). Advanced Materials 20(6).
    [5] N. Xu, L. F. Liu, et al. (2008). Applied Physics Letters 92(23).
    [6] N. Xu, L. F. Liu, et al. (2008). Semiconductor and Science Technology 23(7).
    [7] Waser, R. Dittmann, et al. (2009). Advanced Materials 21(25).
    [8] C. L. Jia, M. Lentzen, et al. (2003). Science 299(870).
    [9] M. Wuttig, N. Yamada. (2007). Nature Materials 6(824).
    [10] Shimeng, H. S. P. Wong. (2010). IEE: Electron Device Letters 31(12).
    [11] Kwon, K. M. Kim, et al. (2010). Nature Nanotechnology 5(2).
    [12] Russo, D. Ielmini, et al. (2009). IEEE: Electron Devices Letters 56(2).
    [13] C. Schindler, S. C. P. Thermadam, R. Waser, et al. (2007). IEEE: Electron Devices Letters 54(10).
    [14] Sawa,. (2008). Materials Today 11(6).
    [15] K. Kinoshita, T. Tamura, et al. (2006). Applied Physics Letters 89(103509).
    [16] K. M. Kim, B. J. Choi, et al. (2007). Applied Physics Letters 90(242906).
    [17] G. S. Park, X. S. Li, et al. (2007) Applied Physics Letters 91(222103).
    [18] C. L. Jia, M. Lentzen, K. Urban. (2003) Science 299(870).
    [19] Liu, B. Chen, et al. (2011). Applied Physics A: Materials Science & Processing 102(4): 991-996.
    [20] B. Swaroop, W. C. West, et al. (1998). IEEE: International Symposium on Circuits and Systems (ISCAS) 3(33).
    [21] M. N. Kozicki, M. Mitkova, et al. (2003). Superlattices Microstruct 34(459).
    [22] M. N. Kozicki, M. Park, et al. (2005). IEEE: Nanotechnology 4(331).
    [23] K. Terabe, T. Hasegawa, et al. (2005) Nature 433(47).
    [24] N. Banno, T. Sakamoto, et al. (2006). Japan Journal of Applied Physics 45(3666).
    [25] C. Schindler, M. Meier, R. Waser, et al. (2007). IEEE: Non-Volatile Memory Technology 2007(82).
    [26] Y. Hirose, H. Hirose. (1976). Journal of Applied Physics 47( 2767).
    [27] C. Yoshida, K. Kinoshita, T. Yamasaki, et al. (2008). Applied Physics Letters 93(4).
    [28] Lee, S. Han, et al. (2009). Nano Letters 9(4).
    [29] S. Kaeriyama, T. Sakamoto, et al. (2005). IEEE: Journal of Solid-State Circuits 40(168).
    [30] N. Banno, T. Sakamoto, et al. (2006). Japan Journal of Applied Physics 45(3666).
    [31] M. N. Kozicki, M. Balakrishan, et al. (2005). IEEE: Non-Volatile Memory Technology 2005(83).
    [32] Z. Wang, P. B. Griffin, et al. (2007). IEEE: Electron Device Letters (28)14.
    [33] C. Schindler, S. C. P. Thermadam, et al. (2007). IEEE: Electron Devices Letters 54( 2762).
    [34] Sakamoto, T. K. Lister, et al. (2007). Applied Physics Letters 91(9).
    [35] Y. C. Yang, F. Pan, et al. (2009). Nano Letters 9(4).
    [36] H. X. Guo, B. Yang, et al. (2007). Applied Physics Letters 91(24).
    [37] Guo, C. Schindler, et al. (2007). Applied Physics Letters 91(13).
    [38] Chang, S. H. Aronson, et al. (2008). Applied Physics Letters 92(18).
    [39] Chang, S. H. Aronson, et al. (2009). Physical Review Letters 102(2).
    [40] Y. Chao, F. Pan, et al. (2010). New Journal of Physics 12(2).
    [41] Hwang, M.J. Lee, et al. (2010). Applied Physics Letters 97(5).
    [42] Russo, D. Ielmini, et al. (2009). IEEE: Electron Devices Letters 56(2).
    [43] K. M. Kim, B. J. Choi, et al. (2007). Applied Physics Letters 90(242906).
    [44] K. Kinoshita, T. Tamura, et al. (2006). Applied Physics Letters 89(103509).
    [45] Y. H. Do, J. S. Kwak, et al. (2009). Applied Physics Letters 95(093507).
    [46] L. Yuanhua, J. Wang, et al. (2004). Applied Physics Letters 85(5664).
    [47] J. Wu, C. W. Nam, et al. (2002). Physics Review Letters 89(217601).
    [48] Nagashima, T. Yanagida, et al. (2010). Nano Letters 10(4).
    [49] Son, Y.H. Shin, et al. (2010). ACS Nano 4(5).
    [50] Kim, J. H. Lee, et al. (2008). Applied Physics Letters 93(3).
    [51] Oka, T. Yanagida, et al. (2009). Journal of the American Chemical Society 131(10).
    [52] Oka, T. Yanagida, et al. (2010). Journal of the American Chemical Society 132(19).
    [53] Nagashima, T. Yanagida, et al. (2010). Nano Letters 10(4).
    [54] Jiang, T. Herricks, et al. (2002). Nano Letters 2(12).
    [55] Dong, D. S. Lee, et al. (2007). Applied Physics Letters 90(4).
    [56] Seo, M. J. Lee, et al. (2004). Applied Physics Letters 85(23).
    [57] Fujiwara, Takumi, et al. (2008). Japan Journal of Applied Physics 47(8).
    [58] Jiang, T. Herricks, et al. (2002). Nano Letters 2(12).
    [59] Zhong, D. C. Zeng, et al. (2010). Acta Materialia 58(18).
    [60] Goncalves, L. C. Campos, et al. (2009). Journal of Applied Physics 106(034303).
    [61] E. M. Alkoy, P. J. Kelly. (2005). Vacuum 79(221).
    [62] A. Ogwu, E. Bouquerel, et al. (2005). Journal of Physics 38(266).

    無法下載圖示 校內:2016-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE