簡易檢索 / 詳目顯示

研究生: 黃俊維
Huang, Chun-Wei
論文名稱: 以粒子網格法在電漿製程中模擬非對稱二次電子激發之現象
Particle-In-Cell Simulation of Asymmertic Secondary Electron Emission in Plasma Processing
指導教授: 西村泰太郎
Yasutaro Nishmura
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 47
中文關鍵詞: 粒子網格法二次電子非對稱系統
外文關鍵詞: Particle-in-Cell, Secondary electron emission, Asymmetric system
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用粒子網格法(Particle-in-Cell法)模擬環境為一維空間、一維速度,兩極板為非對稱的系統條件下,探討其因為二次電子的發射產生的不穩定行為,並試圖去控制。
    本PIC模型假設條件還考慮到自恰電場。通過數值模擬的結果,可以發現二次電子的發射系數 γ 的增加使得電漿電位逐漸得消失。而且因為二面牆不同的邊界條件 γ 和電位 Φ 而形成的非對稱系統,在短時間的模擬,二面牆之間產生了淨電流而影響了電位差。另外也發現,如果有更多的二次電子被發射出來,將會使得電位差更大。通過長時間的數值模擬,它證明了只要 γ<1.0電漿放電被保證是穩定的。

    Simulating the electron behavior (without ion) in plasma for one-dimensional in the configuration space, one-dimensional in the velocity space using Particle-in-Cell (PIC) method, between two plates in asymmetric systems is investigated. The secondary electron emission (SEE) effects which can make sheath potential is unstable discussed.
    The PIC model takes into account of the self-consistent electric field. By numerical simulation result, it is found that increasing secondary electron emission coefficient γ makes plasma potential progressively small and finally the sheath potential disappear. Furthermore, different boundary condition for γ and potential Φ for two walls are given to make asymmetric system, which generates a net current between two walls and affects their potential difference in short term. It is found that the larger population of emitted electrons make the potential difference larger. By a long term numerical simulation, it is demonstrated that the plasma discharge is guaranteed to be stable as long as γ<1.0.

    Contents 摘要 I Abstract II Acknowledgements III Contents IV List of Figures VI List of Abbreviations VIII Chapter 1 Introduction 1 1.1 Background and Purpose 1 1.2 Numerical Simulation as a Research Tool 3 1.3 Thesis Overview 4 Chapter 2 Theoretical and Computational Model 5 2.1 Plasma Simulation 5 2.2 Governing Model Equations 5 2.3 Normalization of Vlasov-Poisson System 6 2.5 Particle-In-Cell Method 8 2.5.1 The Initial Loading and Random Number Generator 9 2.5.2 Weighing Particles and Gathering Charge 10 2.5.3 Solving Poisson’s Equation 11 2.5.4 Interpolating Electric Field 12 2.5.5 Pushing Particles 15 2.6 Free Streaming of Electrons as an Initial Excercise 16 2.7 Verification of Poisson solver 19 Chapter 3 Background of Needs in Plasma Processing Technologies and Plasma-Surface Interaction 21 3.1 Plasma Anisotropy as the Key Element in the Success of Plasma Processing. 21 3.2 Usefulness of the PIC Simulation for Various Plasma Application 22 Chapter 4 Plasma Processing and Secondary Electron Emission 24 4.1 The Planar Sheath Equation and the Bohm Sheath Criterion 24 4.2 Secondary Electron Behavior 27 4.3 Effects of Secondary Electron Emission on Sheath Potential 29 4.4 Velocity Distribution in the Presence of Secondary Electrons 34 4.5 Investigation of Asymmetric Planar Systems 36 4.5.1 Short Time Behavior Comparable to an Electron Bounce Time 37 4.5.2 Long Time Behavior 41 Chapter 5 Summary and Future Work 43 5.1 Summary 43 5.2 Future Work 44 Reference 45

    Reference
    [1] L. Xu, L. Chen, M. Funk, A. Ranjan, M. Hummel, R. Bravenec, R. Sundararaa-
    jan, D. J. Economou, and V. M. Donnelly, “Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge,” Applied Physics Letters, vol. 93, no. 26, pp.261502-1-261502-3, Feb. 2008.
    [2] M. A. Lieberman and A. J. Lichtenberg, “Principles of Plasma Discharges
    and Materials Processing”, 2nd ed. (John Wiley & Sons, 2005), pp.1-14.
    [3]M. B. Kallenrode, “An Introduction to Plasmas Heliosphere and Magneto-spheres”, 3rd ed. (Springer, 2004), pp.113-132.
    [4] National Science Council, Republic of China, “Pathfinding for 75nm Semi-conductor Technology Nodes,” 2013.
    [5] D. R. Nicholson, Introduction to Plasma Theory, 2nd ed., (Krieger, 1992), pp.1-7.
    [6] I.H.Hutchinson, “Introduction to Plasma Physics”, Massachusetts Institute of Technology, http://silas.psfc.mit.edu/introplasma/ ” 2001.
    [7] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions,” (Dover, 1970), p.933.
    [8] W. M. Hager, “Applied Numerical Linear Algebra,” (Prentice Hall, 1988), p.346.
    [9] C. K. Birdsall and A. B. Langdon, “Plasma Physics via Computer Simulation,”
    (IOP publishing, 1986), p.12.
    [10] R. D. Ruth, “A canonical integration technique,” IEEE Transactions on Nucle-ar
    Science, vol. 30, no. 4, pp.2669-2671, Aug. 1983.
    [11] Y. Chen, Y. Nishimura, and C. Z. Cheng, “Kappa Distribution Function Effects
    on Landau Damping in Electrostatic Vlasov Simulation,” Terrestrial, Atmos-pheric and Oceanic Sciences, vol. 24, no. 2, pp. 273-281, Apr. 2013.
    [12] N. G. Van Kampen, “On the theory of stationary waves in plasmas,” Physica, vol. 21, no. 6, pp. 949-943, Jun. 1955.
    [13] C. Z. Cheng and G. Knorr, “Integration of Vlasov equation in configuration space,” Journal of Computational Physics, vol.22, no. 3, pp.330-351, Nov. 1976.
    [14] M. Campanell and H. Wang, “Influence of emitted electrons transiting be-tween surfaces on plasma surface interaction,” Applied Physics Letters, vol. 103, no. 10, pp.104104-1-104104-4, Sep. 2013.
    [15] M. D. Campanell, A. V. Khrabrov, and I. D. Kaganovich, “Absence of Debye Sheaths due to Secondary Electron Emission,” Physics Review Letters, vol. 108, pp.255001-1-255001-5, Jun. 2012.
    [16] M. D. Campanell, A. V. Khrabrov, and I. D. Kaganovich, “General Cause of Sheath Instability Identified for Low Collisionality Plasmas in Devices with Secondary Electron Emission,” Physics Review Letters, vol. 108, pp.235001-1-235001-5, Jun. 2012.
    [17] J. P. Sheehan, I. Kaganovich, and E. Barnat, U.S. DOE Plasma Science Center, December 7, 2012.
    [18] M. Campanell, “Negative plasma potential relative to electron-emitting sur-faces,” Physical Review E, vol. 88, pp.033103-1-033103-10, Sep. 2013.
    [19] Y. Nishimura, Z. Lin, J. L. V. Lewandowski, and S. Ethier ”A finite element Poisson solver for gyrokinetic particle simulations in a global field aligned mesh,” Journal of Computational Physics, vol. 214, no. 2, pp. 657-671, May 2006.
    [20] A. Shih, J. Yater, C. Hor, R. Abrams, “Secondary electron emission studies”, Applied Surface Science, vol. 111, pp.251-258, Feb. 1997.
    [21] V.J.Logeeswaran, J. Oh, A. P. Nayak, et al., “A Perspective on Nanowire Pho-todetectors: Current Status, Future Challenges, and Opportunities”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 4, pp.1002-1032, July/August 2011.
    [22] J. K. Lee, N. Yu. Babaeva, H. C. Kim, O. V. Manuilenko, and J. W. Shon, “Simulation of Capacitively Coupled Single and Dual-Frequency RF Dis-charges”, IEEE Transactions on Plasma Science, vol. 32, no. 1, pp.47-53, Feb. 2004.
    [23] P. McSwiggen, “http://www.mcswiggen.com/index.htm”, McSwiggen &
    Associates 2005.
    [24] S. Kondo and K. Nanbu, “Analysis of three-dimensional DC magnetron dis-charge by the Particle-in-Cell/Monte Carlo Method,” Jpn. J. Appl. Phys., vol. 35, no. 7B, pp. 4808-4814, July 1997.
    [25] F.F. Chen, “Introduction to plasma Physics and Controlled Fusion”, 2nd ed. (Plenum Press, 1983), p.290.
    [26] C.W Huang, Y.C Chen, and Y. Nishimura, “Particle-in-Cell simulation of plasma sheath dynamics with kinetic ions”, to be published in IEEE Transac-tions on Plasma Science.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE