簡易檢索 / 詳目顯示

研究生: 劉嘉怡
Liu, Chia-Yi
論文名稱: 銅/氧化亞銅複合薄膜之光電性質研究與光偵測器之應用
Study of the photoelectric property of Cu/Cu2O composite thin film and the application for photodetectors
指導教授: 黃榮俊
Huang, Jung-Chun Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 氧化亞銅透明導電膜鈣鈦礦光偵測器
外文關鍵詞: Cu, Cu2O, Perovskite, Transparent conducting oxide, photodetector
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用離子束濺鍍系統(Ion Beam Sputtering, IBS)通氬氣與氧氣轟擊銅靶成長銅/氧化亞銅複合薄膜,薄膜的銅與其氧化物的成分比例隨著通氧比例而改變。在30%通氧量下IBS成長出銅/氧化亞銅複合薄膜進行後退火實驗,經過450℃退火的薄膜在黃光附近的穿透率從45%提升至60%,600℃退火則在可見光區的穿透率整體提升至70%以上,電性皆維持一定水準。在60%通氧量下所成長的薄膜會以氧化亞銅為主體,作為鈣鈦礦光偵測器的電洞傳輸材料(Hole Transport Material, HTM),期望減少鈣鈦礦(Perovskite)因大氣與金電極對其不良的影響。比較標準元件與鍍上氧化亞銅之鈣鈦礦光偵測器之實驗結果,會發現有鍍上氧化亞銅的光偵測器會提高光響應(Responsivity, R)與偵測靈敏度(Detectivity, D*),並將樣品放置15天後測試其穩定性。未有氧化亞銅保護的鈣鈦礦光偵測器效能急遽劣化,而鍍上氧化亞銅的光偵測器皆維持一定效能,由此可證明氧化亞銅對於鈣鈦礦光偵測器可作為有效的電洞傳輸層更可以減少鈣鈦礦受大氣中水氧的影響使元件效能的穩定性延長並維持一定水準。

    In this thesis, I used Ion beam sputtering (IBS) and Cu target to grow Cu/Cu2O composite thin film. In the growing process, the ratio of Cu and oxides varied with the ratio of Argon and Oxygen. At 30% Oxygen partial pressure, the thin film grew by IBS would mainly comprise of Cu and Cu2O. The first part of this thesis is focused on this thin films and rapid thermal annealing (RTA), and it is expected that the transmittance and electrical properties of Cu/Cu2O composite thin film would be improved.
    Nowadays, the most popular materials used in solar cells and photodetectors area is the perovskite. Besides the superior light absorptance, incident photon-electron conversion efficiency (IPCE), and low irradiative carrier recombination, the simple fabricating process and low costs are both its advantages. However, the perovskite would hydrolyze into PbI2 in a short time after contacting the atmosphere and cause the efficiency of cells decreasing very soon. Moreover, Au electrode would have bad influences on perovskite layers because of the diffusion effect. In the second part of this thesis, I used Cu/Cu2O composite thin film grew by IBS under 60% oxygen pressure and covered the perovskite layer to reduce the bad influences affected by atmosphere and Au electrode. Also, Cu2O is a p-type semiconductor material which has good carrier mobility, band matching with perovskite and low cost so that Cu2O is as a hole transport material.

    第一章 緒論………………………………………………………………………………1 1.1 研究動機與目的 …………..…………………………………………………...1 1.2 銅 (Cu) 與氧化亞銅 (Cu2O) 基本介紹………………………..……………..3 1.2.1 銅的基本性質.…………….……………………………………………...3 1.2.2 氧化亞銅的基本性質………………………………...…………………..4 1.3 鈣鈦礦基本介紹………………………………………………..……………….4 1.3.1 鈣鈦礦簡介…………………………………………….………………....4 1.3.2 鈣鈦礦光電導體………………………………………………………….8 第二章 理論與文獻回顧…………………………………………………………………9 2.1 快速熱退火 (Rapid thermal annealing, RTA) 與銅氧化物相變………..…9 2.1.1 RTA對固態材料的影響…………………………………………………9 2.1.2 銅氧化物的相變與溫度關係…………………………………………..10 2.2 光偵測器基本原理與介紹…………………………………………………….13 2.2.1 本徵吸收 (Intrinsic absorption)………………………………………..13 2.2.2 光生伏特效應 (Photovoltaic effect)…………………………………...14 2.2.3 光偵測器重要參數…………………………………………………..…16 第三章 實驗方法與分析儀器…………………………………………………………..18 3.1 實驗流程……………………………………………………………………….18 3.2 製程設備……………………………………………………………………….20 3.2.1 離子束濺鍍系統 (Ion beam sputtering, IBS)………………………….20 3.2.2 手套箱…………………………………………………………………..25 3.2.3 旋轉塗佈機 (Spin coater)……………………………………………...25 3.2.4 快速熱退火爐 (Rapid Thermal Annealing, RTA)……………………..26 3.3 實驗操作……………………………………………………………………….27 3.3.1 銅/氧化亞銅複合薄膜之製程………………………………………….27 3.3.2 氧化亞銅薄膜為電洞傳輸層的鈣鈦礦光偵測器製程………………..28 3.4 實驗量測儀器………………………………………………………………….31 3.4.1 X-ray繞射儀 (X-ray diffraction, XRD)……………………………….31 3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)…………..33 3.4.3 光致螢光光譜儀 (Photoluminescence, PL)……………………………34 3.4.4 四點探針與霍爾量測…………………………………………………..36 3.4.5 紫外/可見光光譜 (Ultraviolet/visible spectroscopy, UV-vis)…………38 3.4.6 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)……..39 3.4.7 光電流量測系統…………………………………………………….….40 第四章 實驗結果與討論………………………………………………………………..42 4.1 離子束濺鍍系統在不同氧氣流量轟擊銅靶之樣品變化…………………….42 4.1.1 離子束濺鍍系統成長銅與氧化亞銅複合薄膜之成分分析…………..43 4.1.2 銅與氧化亞銅複合薄膜之表面形貌…………………………………..45 4.1.3 銅與氧化亞銅複合薄膜的電性量測…………………………………..46 4.2 銅與氧化亞銅複合薄膜退火後之特性……………………………………….47 4.2.1 銅與氧化亞銅複合薄膜退火後之樣品形貌…………………………..47 4.2.2 銅與氧化亞銅複合薄膜退火後之電性與穿透率……………………..49 4.2.3 銅與氧化亞銅薄膜退火後成分分析…………………………………..51 4.3 鈣鈦礦 (CsFAMAPbIBr) 與氧化亞銅光偵測器…………………………….54 4.3.1 鈣鈦礦與不同厚度氧化亞銅的形貌與晶相…………………………..54 4.3.2 鈣鈦礦與不同厚度氧化亞銅的能隙…………………………………..57 4.3.3 鈣鈦礦與氧化亞銅之光響應…………………………………………..58 4.3.4 鈣鈦礦與氧化亞銅光偵測器的穩定性………………………………..67 第五章 結論……………………………………………………………………………..69 參考文獻…………………………………………………………………………………..71

    [1] https://www.materialsnet.com.tw/DocView.aspx?id=22789[[
    [2] Xiao, Jia‐Wen, et al. "Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells." Solar RRL1.9 (2017): 1700082.
    [3] Pang, Shangzheng, et al. "Efficient bifacial semitransparent perovskite solar cells using Ag/V2O5 as transparent anodes." ACS applied materials & interfaces 10.15 (2018): 12731-12739.
    [4] https://baike.baidu.com/item/%E9%93%9C/668243
    [5]https//baike.baidu.com/item/%E6%B0%A7%E5%8C%96%E4%BA%9A%E9%93%9C
    [6] Kim, Byeong Jo, Sangwook Lee, and Hyun Suk Jung. "Recent progressive efforts in perovskite solar cells toward commercialization." Journal of Materials Chemistry A (2018).
    [7] T. Leijtens, et al., “Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier Mobility”, ACS Nano 8, 7147 (2014)
    [8] S. D. Stranks, et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.”, Science 342, 341 (2013)
    [9] S. D. Stranks, et al., “Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states”, Phys. Rev. Appl. 2, 034007 (2014)
    [10] J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
    [11] Shen, P. S., Chen, J. S., Chiang, Y. H., Li, M. H., Guo, T. F., & Chen, P. (2016). Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module. Advanced Materials Interfaces, 3(8).
    [12] Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. (2015). Electrodeposition of PbO and its in situ conversion to CH 3 NH 3 PbI 3 for mesoscopic perovskite solar cells. Chemical Communications,51(8), 1457-1460.
    [13] Christians, J. A., Fung, R. C., & Kamat, P. V. (2013). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society,136(2), 758-764.
    [14] Montcada, Núria F., et al. "Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination." Nanoscale10.13 (2018): 6155-6158.
    [15] 國立交通大學光電工程學系系刊 第五十六期 發行人:陳志弘教授
    [16] Wang, Huan, and Dong Ha Kim. "Perovskite-based photodetectors: materials and devices." Chemical Society Reviews 46.17 (2017): 5204-5236.
    [17] Figueiredo, V., et al. "Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper." Applied Surface Science 254.13 (2008): 3949-3954.
    [18] Valladares, L. De Los Santos, et al. "Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates." Thin Solid Films 520.20 (2012): 6368-6374.
    [19] Chikazumi, S. and S.H. Charap, Physics and Magnetism. 1972
    [20] http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE