簡易檢索 / 詳目顯示

研究生: 紀心郁
Chi, Hsin-Yu
論文名稱: 水熱法與光還原法製備BaTiO3奈米柱/Ag奈米顆粒複合物及其光電化學水分解相關應用
Hydrothermal and Photoreduced Fabrication of BaTiO3 Nanorod-Ag Nanoparticle Composites and Their Application in Photoelectrochemical Water Splitting
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 96
中文關鍵詞: 水熱法光還原法BaTiO3 奈米柱Ag 奈米顆粒表面等離子體壓電性質光電化學水分解
外文關鍵詞: Hydrothermal method, photoreduction method, BaTiO3 nanorod, Ag nanoparticle, surface plasmon effect, piezoelectricity enhanced photoelectrochemical water splitting
相關次數: 點閱:76下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究論文中以兩階段水熱法在FTO基板上合成BaTiO3 奈米柱,並用光還原法使奈米柱結合Ag 奈米顆粒。文中亦探討了複合物在模擬太陽光下的光電化學水分解表現。透過XRD、SEM、TEM及XPS等等確認了結晶相、表面形貌以及元素價態分析。在UV-vis 分析中得到BaTiO3的能隙約為3.18 eV,複合物約為2.5eV。由於奈米銀的表面等離子體效應得以拓展可見光範圍的吸收。透過Mott-Schottky 跟Open-circuit potential 的分析得知了BaTiO3與BaTiO3-Ag皆為N-type。整合UPS與 UV-vis 的數據畫出了能帶圖。在光電化學水分解的實驗中,發現施加超聲波與玻璃附載的BaTiO3-Ag樣品在0.6V下達到0.5%的APBE%。意味著透過與Ag奈米顆粒的結合可以提高BaTiO3在模擬態陽光下的應用。

    BaTiO3 nanorods were fabricated on fluorine-doped tin oxide (FTO) substrates through two-step hydrothermal synthesis and further combined with Ag nanoparticles through photoreduction method. The crystalline phase, morphology, and valance states of the constituent elements were characterized by XRD, SEM, TEM, and XPS. UV-vis results indicated that the band gap of the BaTiO3 and BaTiO3-Ag were approximately 3.18 and 2.5 eV, respectively. The increase in the absorbance in the visible light region for the BaTiO3-Ag composite was attributable to the surface plasmon resonance. Through Mott-Schottky and Open circuit potential measurement, the n-type conduction type of our samples was observed. On a basis of the UPS and UV-Vis results, an associated energy band diagram of the composite was constructed. For the photoelectrochemical water splitting, the APBE reached approximately 0.5% at 0.6 V under ultrasonication and the loading of a piece of glass for the BaTiO3-Ag, indicating the excellent performance in the piezo-photocatalysis.

    Chapter 1 Introduction 1 1.1 Barium titanate (BaTiO3) 1 1.1.1 Crystal Structure and property 1 1.1.2 Synthesis method 2 1.1.2.1 Sol-gel synthesis 2 1.1.2.2 Hydrothermal reaction 3 1.1.2.3 Solvothermal method 6 1.1.3 Morphology of BaTiO3 7 1.1.4 Application of BaTiO3 9 1.1.4.1 Photodegradation 10 1.1.4.2 Photoelectrochemical water-splitting (PEC) 12 1.1.4.3 Piezo-photocatalysis 16 1.1.4.4 Nanogenerator 18 1.2 Silver (Ag) 19 1.2.1 Crystal Structure and property 19 1.2.1.1 Surface plasmon resonance (SPR) 20 1.2.2 Synthesis method 22 1.2.2.1 Photoreduction 23 1.2.2.2 Solvothermal Method 24 1.2.2.3 Electrodeposition 26 1.2.2.4 Microwave-assisted method 28 1.2.3 Morphology of Ag 28 1.2.4 Application of Ag 29 1.2.4.1 Photocatalysts 29 1.2.4.2 Bactericidal applications 32 1.3 BaTiO3/Ag structure (composite) 33 1.3.1 Application of BaTiO3/Ag 33 1.4 Motivation 37 Chapter 2 Experimental methods 38 2.1 Materials 38 2.1.1 Chemicals for hydrothermal method 38 2.1.2 Chemicals for photoreduction 38 2.1.3 Chemicals for substrate cleaning 39 2.1.4 Substrate 39 2.2 Hydrothermal method 39 2.2.1 Substrate cleaning 39 2.2.2 Fabrication of BaTiO3 nanorod array 40 2.2.2.1 First step hydrothermal synthesis 40 2.2.2.2 Second step hydrothermal synthesis 41 2.2.3 Fabrication BaTiO3/Ag heterostructure 42 2.3 Characterization 42 2.3.1 X-ray diffraction (XRD) analysis 42 2.3.2 Scanning electron microscopy (SEM) 43 2.3.3 UV-Vis spectrometry 44 2.3.4 Photodegradation 45 2.3.5 Piezoresponse Force Microscopy (PFM) 46 2.3.6 X-ray photoelectron spectroscopy (XPS) 48 2.3.7 Ultraviolet Photoelectron Spectroscopy (UPS) 49 2.3.8 PEC water splitting 51 2.3.9 Transmission Electron Microscopy (TEM) 52 Chapter 3 Result and discussions 54 3.1 Fabrication of BaTiO3 54 3.1.1 TiO2 (First-step hydrothermal reaction) 54 3.1.2 BaTiO3 films (Second-step hydrothermal reaction) 56 3.2 Fabrication of Ag nanoparticles decorated on BaTiO3 nanorods 58 3.3 XPS 61 3.4 TEM results 64 3.5 PFM results 67 3.6 Energy band diagram construction 68 3.6.1 Mott-Schottky measurement 68 3.6.2 UV-Vis spectra 69 3.6.3 UPS results 70 3.6.4 Band diagram 72 3.7 Application 74 3.7.1 PEC measurement 74 Chapter 4 Conclusions and future works 82 4.1 Conclusions 82 4.2 Future work 83 References 84

    [1] Q. Zheng, B. Shi, Z. Li, and Z. L. Wang, "Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems." Advanced Science, 4, 7, 1700029, (2017).
    [2] M. W. Hooker, "Properties of pzt-based piezoelectric ceramics between-150 and 250 °C." NASA Langley Technical Report Server, (1998).
    [3] I. Kanno, H. Kotera, and K. Wasa, "Measurement of transverse piezoelectric properties of PZT thin films." Sensors and Actuators A: Physical, 107, 1, 68-74, (2003).
    [4] K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates." Nano letters, 10, 12, 4939-4943, (2010).
    [5] Y. Chen, S. Lan, and M. Zhu, "Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate." Chinese Chemical Letters, 32, 6, 2052-2056, (2021).
    [6] Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao, and Y. Zhang, "High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF." Nano Energy, 11, 719-727, (2015).
    [7] J. Wang, F. Meng, X. Ma, M. Xu, and L. Chen, "Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles." Journal of Applied Physics, 108, 3, 034107, (2010).
    [8] C. J. Brinker, G. Frye, A. Hurd, and C. Ashley, "Fundamentals of sol-gel dip coating." Thin solid films, 201, 1, 97-108, (1991).
    [9] H. Zhang, C. Kam, Y. Zhou, X. Han, Y. Lam, Y. Chan, and K. Pita, "Optical and electrical properties of sol–gel derived BaTiO3 films on ITO coated glass." Materials chemistry and physics, 63, 2, 174-177, (2000).
    [10] J. Yuk and T. Troczynski, "Sol–gel BaTiO3 thin film for humidity sensors." Sensors and Actuators B: Chemical, 94, 3, 290-293, (2003).
    [11] T. A. Kuriakose, S. N. Kalkura, M. Palanichamy, D. Arivuoli, K. Dierks, G. Bocelli, and C. Betzel, "Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature." Journal of Crystal Growth, 263, 1, 517-523, (2004).
    [12] R. Ashiri, A. Nemati, and M. S. Ghamsari, "Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dip-coating technique." Ceramics International, 40, 6, 8613-8619, (2014).
    [13] B. Lee and J. Zhang, "Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol–gel process." Thin solid films, 388, 1, 107-113, (2001).
    [14] W. Wang, L. Cao, W. Liu, G. Su, and W. Zhang, "Low-temperature synthesis of BaTiO3 powders by the sol–gel-hydrothermal method." Ceramics International, 39, 6, 7127-7134, (2013).
    [15] Z. Zhou, H. Tang, and H. A. Sodano, "Vertically Aligned Arrays of BaTiO3 Nanowires." ACS Applied Materials & Interfaces, 5, 22, 11894-11899, (2013).
    [16] S. Zhang, D. Chen, Z. Liu, M. Ruan, and Z. Guo, "Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy." Applied Catalysis B: Environmental, 284, 119686, (2021).
    [17] N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, "Shape-Controlled Monocrystalline Ferroelectric Barium Titanate Nanostructures: From Nanotubes and Nanowires to Ordered Nanostructures." The Journal of Physical Chemistry C, 112, 23, 8634-8642, (2008).
    [18] X. Liu, L. Xiao, Y. Zhang, and H. Sun, "Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye." Journal of Materiomics, 6, 2, 256-262, (2020).
    [19] Z. Zhou, C. C. Bowland, B. A. Patterson, M. H. Malakooti, and H. A. Sodano, "Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis." ACS Applied Materials & Interfaces, 8, 33, 21446-21453, (2016).
    [20] H. Bai and X. Liu, "Low temperature solvothermal synthesis, optical and electric properties of tetragonal phase BaTiO3 nanocrystals using BaCO3 powder." Materials Letters, 100, 1-3, (2013).
    [21] A. Habib, N. Stelzer, P. Angerer, and R. Haubner, "Effect of temperature and time on solvothermal synthesis of tetragonal BaTiO3." Bulletin of Materials Science, 34, 1, 19-23, (2011).
    [22] M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, "Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO3 Nanoparticles." Chemistry of Materials, 20, 16, 5381-5387, (2008).
    [23] J. Liu, Y. Sun, and Z. Li, "Ag loaded flower-like BaTiO3 nanotube arrays: fabrication and enhanced photocatalytic property." CrystEngComm, 14, 4, 1473-1478, (2012).
    [24] J. Miao, C. Hu, H. Liu, and Y. Xiong, "BaTiO3 nanocubes: Size-selective formation and structure analysis." Materials Letters, 62, 2, 235-238, (2008).
    [25] J. Yuh, J. C. Nino, and W. M. Sigmund, "Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning." Materials Letters, 59, 28, 3645-3647, (2005).
    [26] A. F. Demirörs and A. Imhof, "BaTiO3, SrTiO3, CaTiO3, and BaxSr1−xTiO3 Particles: A General Approach for Monodisperse Colloidal Perovskites." Chemistry of Materials, 21, 13, 3002-3007, (2009).
    [27] L. Yao, Z. Pan, J. Zhai, and H. H. Chen, "Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors." Nanoscale, 9, 12, 4255-4264, (2017).
    [28] R. Vijayalakshmi and V. Rajendran, "Synthesis and characterization of cubic BaTiO3 nanorods via facile hydrothermal method and their optical properties." Digest Journal
    of Nanomater and Biostructur, 5, 5, 511-517, (2010).
    [29] M. Hao, G. Fan, Y. Lou, Y. Wen, H. Deng, F. Wang, W. Lv, M. Yuchi, and M. Ding, "Regular and uniform-shaped BaTiO3 microplates prepared using a modified precursor." Ceramics International, 45, 2, Part A, 2338-2344, (2019).
    [30] S. N. S. Jefri, A. H. Abdullah, and E. N. Muhamad, "Response surface methodology: photodegradation of methyl orange by CuO/ZnO under UV light irradiation." (in en), Asian Journal of Green Chemistry, 3, 2, 271-287, (2019).
    [31] P. Seller, C. A. Kelly, J. W. M. Rudd, and A. R. MacHutchon, "Photodegradation of methylmercury in lakes." Nature, 380, 6576, 694-697, (1996).
    [32] W. Wang, G. Huang, J. C. Yu, and P. K. Wong, "Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms." Journal of Environmental Sciences, 34, 232-247, (2015).
    [33] S. Yan, S. Lv, Z. Li, and Z. Zou, "Organic–inorganic composite photocatalyst of g-C 3N4 and TaON with improved visible light photocatalytic activities." Dalton Transactions, 39, 6, 1488-1491, (2010).
    [34] T. Li, L. Zhao, Y. He, J. Cai, M. Luo, and J. Lin, "Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation." Applied Catalysis B: Environmental, 129, 255-263, (2013).
    [35] C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, and H. Fu, "Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation." Chemical Communications, 48, 23, 2858-2860, (2012).
    [36] K. Xu, J. Wu, C. F. Tan, G. W. Ho, A. Wei, and M. Hong, "Ag–CuO–ZnO metal–semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation." Nanoscale, 9, 32, 11574-11583, (2017).
    [37] S. Kappadan, T. W. Gebreab, S. Thomas, and N. Kalarikkal, "Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants." Materials Science in Semiconductor Processing, 51, 42-47, (2016).
    [38] X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, and F. Huang, "Photocatalytic Activities of Heterojunction Semiconductors Bi2O3/BaTiO3:  A Strategy for the Design of Efficient Combined Photocatalysts." The Journal of Physical Chemistry C, 111, 49, 18288-18293, (2007).
    [39] Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, and Y. Li, "Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting." Advanced Energy Materials, 7, 19, 1700555, (2017).
    [40] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode." Nature, 238, 5358, 37-38, (1972).
    [41] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis." Journal of photochemistry and photobiology C: Photochemistry reviews, 1, 1, 1-21, (2000).
    [42] M. S. Faber and S. Jin, "Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications." Energy & Environmental Science, 7, 11, 3519-3542, (2014).
    [43] C. Li, T. Fang, H. Hu, Y. Wang, X. Liu, S. Zhou, J. Fu, and W. Wang, "Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation." Ceramics International, 47, 8, 11379-11386, (2021).
    [44] W. Yang, Y. Yu, M. B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, and X. Wang, "Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2–BaTiO3 Core–Shell Nanowire Photoanodes." Nano letters, 15, 11, 7574-7580, (2015).
    [45] W. Zhao, Q. Zhang, H. Wang, J. Rong, L. E, and Y. Dai, "Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect." Nano Energy, 73, 104783, (2020).
    [46] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires." Nano Energy, 13, 414-422, (2015).
    [47] X. Xu, Z. Wu, L. Xiao, Y. Jia, J. Ma, F. Wang, L. Wang, M. Wang, and H. Huang, "Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis." Journal of Alloys and Compounds, 762, 915-921, (2018).
    [48] Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, and Z. L. Wang, "BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators." The Journal of Physical Chemistry Letters, 3, 23, 3599-3604, (2012).
    [49] J. Yan and Y. G. Jeong, "High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes." ACS Applied Materials & Interfaces, 8, 24, 15700-15709, (2016).
    [50] A.-T. Le, P. T. Huy, P. D. Tam, T. Q. Huy, P. D. Cam, A. A. Kudrinskiy, and Y. A. Krutyakov, "Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique." Current Applied Physics, 10, 3, 910-916, (2010).
    [51] Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, and S. Yang, "A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing." Advanced Functional Materials, 24, 25, 3933-3943, (2014).
    [52] J. Jana, M. Ganguly, and T. Pal, "Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application." RSC Advances, 6, 89, 86174-86211, (2016).
    [53] M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, "Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures." Chemical Reviews, 111, 6, 3736-3827, (2011).
    [54] R. B. Schasfoort, "Handbook of surface plasmon resonance." USA, Royal Society of Chemistry, (2017).
    [55] A. Bumajdad and M. Madkour, "Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation." Physical Chemistry Chemical Physics, 16, 16, 7146-7158, (2014).
    [56] V. Selvamani, "Chapter 15 - Stability Studies on Nanomaterials Used in Drugs." in Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier, 425-444, (2019)
    [57] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, "Polyvinylpyrrolidone (PVP) in nanoparticle synthesis." Dalton Transactions, 44, 41, 17883-17905, (2015).
    [58] A. M. Alkilany, A. I. Bani Yaseen, and M. H. Kailani, "Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol." Journal of Nanomaterials, 2015, 712359, (2015).
    [59] R. Javed, M. Zia, S. Naz, S. O. Aisida, N. u. Ain, and Q. Ao, "Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects." Journal of Nanobiotechnology, 18, 1, 172, (2020).
    [60] Y. Chen, W. H. Tse, L. Chen, and J. Zhang, "Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties." Nanoscale Research Letters, 10, 1, 106, (2015).
    [61] P. V. Viet, B. T. Phan, D. Mott, S. Maenosono, T. T. Sang, C. M. Thi, and L. V. Hieu, "Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method." Journal of Photochemistry and Photobiology A: Chemistry, 352, 106-112, (2018).
    [62] X. Deng, C. Wang, E. Zhou, J. Huang, M. Shao, X. Wei, X. Liu, M. Ding, and X. Xu, "One-Step Solvothermal Method to Prepare Ag/Cu2O Composite With Enhanced Photocatalytic Properties." Nanoscale Research Letters, 11, 1, 29, (2016).
    [63] C. Wu, L. Shen, Y. Cai Zhang, and Q. Huang, "Solvothermal synthesis of Ag/ZnO nanocomposite with enhanced photocatalytic activity." Materials Letters, 106, 104-106, (2013).
    [64] S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles." Applied Physics Letters, 93, 7, 305, (2008).
    [65] D. Kong, J. Z. Y. Tan, F. Yang, J. Zeng, and X. Zhang, "Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4." Applied Surface Science, 277, 105-110, (2013).
    [66] X. Luan and Y. Wang, "Plasmon-enhanced Performance of Dye-sensitized Solar Cells Based on Electrodeposited Ag Nanoparticles." Journal of Materials Science & Technology, 30, 1, 1-7, (2014).
    [67] S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, N. M. Huang, H. M. Neoh, H. N. Lim, R. Jamal, and R. Rahman, "Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method." Nanoscale Research Letters, 7, 1, 541, (2012).
    [68] J. Xu, G.-a. Cheng, and R.-t. Zheng, "Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method." Applied Surface Science, 256, 16, 5006-5010, (2010).
    [69] O. A. Yeshchenko, V. Y. Kudrya, A. V. Tomchuk, I. M. Dmitruk, N. I. Berezovska, P. O. Teselko, S. Golovynskyi, B. Xue, and J. Qu, "Plasmonic Nanocavity Metasurface Based on Laser-Structured Silver Surface and Silver Nanoprisms for the Enhancement of Adenosine Nucleotide Photoluminescence." ACS Applied Nano Materials, 2, 11, 7152-7161, (2019).
    [70] L. Mei, S. Li, Y. Shao, C. Zhang, and J. Wang, "Single-step synthesis of hierarchical flower-like silver structures with assistance of gallic acid." Materials Research Express, 8, 1, 015010, (2021).
    [71] S. E. Skrabalak, L. Au, X. Li, and Y. Xia, "Facile synthesis of Ag nanocubes and Au nanocages." Nature Protocols, 2, 9, 2182-2190, (2007).
    [72] S. H. Park, J. G. Son, T. G. Lee, H. M. Park, and J. o. Song, "One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method." Nanoscale Research Letters, 8, 1, 248, (2013).
    [73] P. Rani, V. Kumar, P. P. Singh, A. S. Matharu, W. Zhang, K.-H. Kim, J. Singh, and M. Rawat, "Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants." Environment International, 143, 105924, (2020).
    [74] Z. Han, L. Ren, Z. Cui, C. Chen, H. Pan, and J. Chen, "Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance." Applied Catalysis B: Environmental, 126, 298-305, (2012).
    [75] M. K. Choudhary, J. Kataria, V. K. Bhardwaj, and S. Sharma, "Green biomimetic preparation of efficient Ag–ZnO heterojunctions with excellent photocatalytic performance under solar light irradiation: a novel biogenic-deposition-precipitation approach." Nanoscale Advances, 1, 3, 1035-1044, (2019).
    [76] W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, "Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli." Applied and environmental microbiology, 74, 7, 2171-2178, (2008).
    [77] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, "The bactericidal effect of silver nanoparticles." Nanotechnology, 16, 10, 2346, (2005).
    [78] S. Ahrland, J. Chatt, and N. R. Davies, "The relative affinities of ligand atoms for acceptor molecules and ions." Quarterly Reviews, Chemical Society, 12, 3, 265-276, (1958).
    [79] X. Jiang, H. Wang, X. Wang, and G. Yuan, "Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite." Solar Energy, 224, 455-461, (2021).
    [80] S. Xu, Z. Liu, M. Zhang, and L. Guo, "Piezotronics enhanced photocatalytic activities of Ag-BaTiO3 plasmonic photocatalysts." Journal of Alloys and Compounds, 801, 483-488, (2019).
    [81] G. Suyal, E. Colla, R. Gysel, M. Cantoni, and N. Setter, "Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles." Nano letters, 4, 7, 1339-1342, (2004).
    [82] A. Kholkin, D. Kiselev, and A. Heredia, "Piezoresponse Force Microscopy." Encyclopedia of Materials: Science and Technology, 1-8, (2011).
    [83] A. M. Venezia, "X-ray photoelectron spectroscopy (XPS) for catalysts characterization." Catalysis Today, 77, 4, 359-370, (2003).
    [84] G. Shao, "Work Function and Electron Affinity of Semiconductors: Doping Effect and Complication due to Fermi Level Pinning." Energy & Environmental Materials, 4, 3, 273-276, (2021).
    [85] X. Shi, L. Cai, M. Ma, X. Zheng, and J. H. Park, "General characterization methods for photoelectrochemical cells for solar water splitting." ChemSusChem, 8, 19, 3192-3203, (2015).
    [86] A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz, and G. H. Kelsall, "Flat band potential determination: avoiding the pitfalls." Journal of Materials Chemistry A, 7, 45, 26162-26176, (2019).
    [87] W. Lu, S. Gao, and J. Wang, "One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance." The Journal of Physical Chemistry C, 112, 43, 16792-16800, (2008).
    [88] S. Joshi, S. J. Ippolito, S. Periasamy, Y. M. Sabri, and M. V. Sunkara, "Efficient Heterostructures of Ag@CuO/BaTiO3 for Low-Temperature CO2 Gas Detection: Assessing the Role of Nanointerfaces during Sensing by Operando DRIFTS Technique." ACS Applied Materials & Interfaces, 9, 32, 27014-27026, (2017).
    [89] X. Li, H. Lu, M. Li, Z. Mai, H. Kim, and Q. Jia, "Characteristics of the low electron density surface layer on BaTiO3 thin films." Applied Physics Letters, 92, 1, 012902, (2008).
    [90] K. Woong Lee, K. Siva Kumar, G. Heo, M.-J. Seong, and J.-W. Yoon, "Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence." Journal of Applied Physics, 114, 13, 134303, (2013).
    [91] S. Kumar, V. S. Raju, and T. R. N. Kutty, "Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy." Applied Surface Science, 206, 1, 250-261, (2003).
    [92] K. S. Hong, M. G. Ha, J.-S. Bae, J. S. Kim, Y. R. Bae, C. W. Ahn, I. W. Kim, and J. P. Kim, "Structural characteristics and chemical bonding states with temperature in barium titanate nanopowders prepared by using the solvothermal method." Current Applied Physics, 15, 11, 1377-1383, (2015).
    [93] S. Kumbhar, M. Mahadik, P. Chougule, V. Mohite, Y. Hunge, K. Rajpure, A. Moholkar, and C. Bhosale, "Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method." Mater. Sci.-Poland, 33, 852-861, (2015).
    [94] H. Karimi-Maleh, B. G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, and F. Karimi, "Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration." Journal of Molecular Liquids, 314, 113588, (2020).
    [95] X. Zhang and M. Z. Yates, "Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite." ACS Applied Materials & Interfaces, 10, 20, 17232-17239, (2018).
    [96] P. Uznanski, J. Zakrzewska, F. Favier, S. Kazmierski, and E. Bryszewska, "Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors." Journal of Nanoparticle Research, 19, 3, 121, (2017).
    [97] S. Nayak, B. Sahoo, T. K. Chaki, and D. Khastgir, "Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior." RSC Advances, 4, 3, 1212-1224, (2014).
    [98] G. Panchal, D. Shukla, R. Choudhary, V. Reddy, and D. Phase, "The effect of oxygen stoichiometry at the interface of epitaxial BaTiO3/La0. 7Sr0. 3MnO3 bilayers on its electronic and magnetic properties." Journal of Applied Physics, 122, 8, 085310, (2017).
    [99] S. Luo, S. Yu, R. Sun, and C.-P. Wong, "Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss." ACS Applied Materials & Interfaces, 6, 1, 176-182, (2014).
    [100] M.-H. Zhao, Z.-L. Wang, and S. X. Mao, "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope." Nano letters, 4, 4, 587-590, (2004).
    [101] M. F. Abdel Messih, M. A. Ahmed, A. Soltan, and S. S. Anis, "Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes." Journal of Photochemistry and Photobiology A: Chemistry, 335, 40-51, (2017).

    下載圖示 校內:2024-01-31公開
    校外:2024-01-31公開
    QR CODE