簡易檢索 / 詳目顯示

研究生: 朱容生
Ju, Lung-Sheng
論文名稱: 利用微波溶熱法與胺類螯合劑合成摻雜氮之二氧化鈦介孔次微米球及其光催化性質
Synthesis of N doped TiO2 mesoporous spheres using different amine agents via microwave-assisted solvothermal method and their photocatalytic performances
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: N-TiO2氮源微波溶熱法
外文關鍵詞: N-doped TiO2, amine chelating agent, microwave, solvothermal reaction
相關次數: 點閱:118下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用溶膠凝膠法,分別以二次乙基三胺(DETA)、二乙基胺(DEA)、二甲胺(DMA)、三甲基胺(TMA)為氮源,十六胺(HDA)為結構劑,異丙氧基鈦(TIP)為鈦的前驅物,使用聚焦式微波反應器,僅需190℃、一小時的溶熱反應,即可合成粒徑為400-600 nm、淡黃色的純銳鈦礦相N-TiO2介孔次微米球。從UV-Visible 吸收光譜圖發現,N-TiO2在可見光區域的光吸收率明顯較P25高。且經由XPS分析顯示,所得到的氮摻雜有兩種形式,分別為取代態和間隙態,表示氮有確實進入到TiO2晶格內,同時本研究也發現,氮鍵結的形式會隨著胺類螯合劑種類以及添加之Ti/N配比不同,而產生明顯的改變,同時也影響了次微米球的比表面積與光催化活性。最後,以羅丹明B水溶液在可見光(420nm)照耀下的脫色率作為光催化活性依據,發現N-TiO2的光催化活性比P25要高,且當氮以間隙型態(Ti-O-N)摻入的方式,較取代型態的方式(Ti-N)摻入,其在可見光的吸收愈高,而光催化效果也愈好。在本研究所合成之N-TiO2樣品中,以三甲基胺(TMA)作為氮源、且N/Ti添加莫耳比為0.9的樣品,因為其間隙型態的含氮量是所有N-TiO2樣品中最高的,因此具有最高的光催化效率。

    In this study, a novel and facile method is developed to synthesize N-TiO2 mesoporous microspheres via microwave-assisted solvothermal reaction route. Sol-gel process using titanium isopropoxide as precursors, hexadecylamine as structure-directing agent, and diethylenetriamine、diethylamine、dimethylamine、trimethylamine as amine agents, respectively. The size of the microsphere was ranging from 400 to 600 nm in anatase phase can be obtained using the current method under 190℃ in 1 hour. A shift of the absorption edge to a lower energy and a stronger absorption in the visible light region were observed. Both substitutional and interstitial nitrogen-doped titanium dioxides were prepared. Their surface states were clarified by XPS spectra. The nitrogen bonding form changed from different N/Ti ratio and different amine agents, and the specific surface area、photodegradation was different. The results of photodegradation or the organic pollutant rhodamine B in the visible light irradiation (420 nm) suggested that the TiO2 photocatalysts after nitrogen doping were greatly improved compared with Degussa P-25. The results showed that the photodegradatio, and the trimethylamine (N/Ti ratio =0.9)was obviously prior to others N-doped TiO2, because its interstitial is the height in N-doped TiO2 sample. Moreover, the visible light activity of interstitial N-doped TiO2 is higher than that of
    substitutional N-doped TiO2 .

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧與理論基礎 3 2.1 TiO2晶體結構 3 2.2 TiO2/N-TiO2合成方法 6 2.2.1 溶膠凝膠法 6 2.2.2 溶熱法 8 2.3 TiO2介孔微米球 9 2.3.1 以溶膠凝膠法形成介孔微米球機制 9 2.3.2 以溶膠凝膠法形成N-TiO2介孔微米球 12 2.4 改質後的TiO2光觸媒反應 16 2.4.1 摻雜金屬元素 18 2.4.2 摻雜非金屬元素 18 2.4.3 光催化反應機制 22 2.5 微波合成技術 24 2.5.1 微波加熱原理 24 2.5.2 微波加熱應用 26 2.5.3 實驗裝置 27 第三章 實驗方法與步驟 28 3.1 實驗藥品 28 3.2 實驗流程 30 3.3 特性分析 31 3.3.1 X-ray 粉末繞射分析 (X-ray Diffraction, XRD) 31 3.3.2 紫外-可見光光譜儀 (UV-Visible Spectrophotometry, UV-vis) 32 3.3.3 X光光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 33 3.3.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 33 3.3.5 比表面積測定(BET) 34 3.4 光催化實驗 37 3.4.1 光催化實驗設備 37 3.4.2 背景實驗步驟 38 第四章 結果與討論 39 4.1 微波溶熱參數 39 4.1.1 微波溶劑配比之影響 39 4.1.2 微波溫度之影響 41 4.1.3 微波時間之影響 42 4.2 N doped TiO2介孔微米球性質分析 43 4.2.1 Diethylenetriamine (DETA) 45 4.2.2 Diethylamine (DEA) 49 4.2.3 Dimethylamine (DMA) 52 4.2.4 Trimethylamine (TMA) 55 4.3 綜合討論 58 4.3.1 氮摻雜對於二氧化鈦結晶性影響 58 4.3.2 光吸收性質與氮鍵結關連性 58 4.3.3 介孔性質比較 59 4.3.4 氮源螯合機制探討 62 4.4 N doped TiO2介孔微米球光催化反應活性測試 66 4.4.1 背景實驗 67 4.4.2 DETA系列樣品之光催化效率分析 70 4.4.3 DEA、DMA與TMA系列樣品之光催化效率分析 71 第五章 結論 75 參考文獻 77

    [1] C. Burda, Y.B. Lou, X.B. Chen, A.C.S. Samia, J. Stout, J.L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano. Lett, 3, 1049-1051 (2003).
    [2] J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, ” J. Phys. Chem. B, 108, 1230-1240 (2004).
    [3] S.I. Shah, W. Li, C.P. Huang, O. Jung, C. Ni, “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles,” Proc. Natl. Acad. Sci. USA., 99, 6482-6486 (2002).
    [4] Z. Bian, J. Zhu, F. Cao, Y. Lu, H. Li, “In situ encapsulation of Au nano- particles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability,” Chem. Commun., 3789-3791 (2009).
    [5] J. Yin, L. Xiang, X. Zhao, “Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties,” Appl. Phys. Lett., 90, 113112- 113112-3 (2007).
    [6] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293, 269-271 (2001).
    [7] Z. Xiong, X.S. Zhao, “Nitrogen-Doped Titanate-Anatase Core - Shell Nanobelts with Exposed {101} Anatase Facets and Enhanced Visible Light
    Photocatalytic Activity,” J. Am. Chem. Soc., 134, 5754 – 5757 (2012).
    [8] K.Vinodgopal, P. Kamat, “Electrochemically Assisted photocatalysis using nanocrystalline semiconductor thin films,” Sol. Energ. Mat. Sol. C, 38, 401-410 (1995).
    [9] H. Irie, Y. Watanabe, K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B, 107, 5483-5486 (2003).
    [10] K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, K. Ohira, M. Kouya, K. Kumada, “Effect of thermal treatment on photocatalytic activity of N-doped TiO2 particles under visible light,” Thin Solid Films, 516, 7482–7487 (2008).
    [11] S. Han, F. Wang, S. Guo, J. Sun, L. Yang, L. Jiang, D. He, “Study on preparation and application of porous TiO2 photocatalysis material,” Adv. Mater. Res. 183, 1799-1802 (2011).
    [12] Y. Chen, S. Zhang, Y. Yu, H. Wu, S. Wang, B. Zhu, W. Huang, S. Wu, “Synthesis, Characterization, and Photocatalytic Activity of N‐Doped TiO2 Nanotubes,” J. Dispers. Sci. Tech., 29, 245–249 (2008).
    [13] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surfaces Principles, mechanisms, and selected results,” Chem. Rev., 95, 738-758 (1995).
    [14] F. Zhang, N. Huang, P. Yang, X. Zeng, Y. Mao, Z. Zheng, Z. Zhou, X. Liu “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Technol., 84, 476–479 (1996).
    [15] 戴妤娟,以微波溶熱法製備奈米級二氧化鈦及其光催化性質研究,國立成功大學資源工程研究所,中華民國101年6月。
    [16] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Advan. Mater., 11, 1307-1311 (1999).
    [17] Y. Yu, D. Xu, “Single-crystalline TiO2 nanorods : Highly active and easily recycled photocatalysts,” Appl. Catal. B-Environ., 73, 166–171 (2007).
    [18] K. Kakiuchi, E. Hosono, H. Imai, T. Kiura, S. Fujihara, “(111)-faceting of low-temperature processed rutile TiO2 rods,” J. Cryst. Growth, 293, 541-545 (2006).
    [19] 陳富亮,最新奈米光觸媒應用技術,林斯頓國際,46-47 (2003)。
    [20] J. Livage, M. Henry, C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Prog. Solid State Chem., 18, 259-341 (1988).
    [21] B.S. Huang, H.H. Tseng, M.Y. Wey, “Comparison of visible-light-driven routes of anion-doped TiO2 and composite photocatalyst,” J. Ceram. Soc. Jpn., 117, 753-758 (2009).
    [22] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Am. Ceram. Soc. Bull., 67, 1673–1678 (1988).
    [23] H. Colfen, S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew. Chem. Int. Edit. 42, 2350-2365 (2003).
    [24] Y. Huang, C. M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires,” Pure. Appl. Chem. 76, 2051-2068 (2004).
    [25] C. Murray, S. Sun, H. Doyle, T. Betley, “Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices,” Mrs. Bull. 26, 985-991 (2001).
    [26] D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells,” Adv. Mater. 21, 2205-2207 (2009).
    [27] D. Chen, L. Cao, F. Huang, P. Imperia, Y.B Cheng, R.A. Caruso, “Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm),” J. Am. Chem. Soc. 132, 4438–4444 (2010).
    [28] D. Wang, S. Lyu, “Preparation of Mesoporous TiO2 Spheres via Sol-Gel Assisted Hydrothermal Method Using Double Templates,” Chin. J. Catal. 33, 1681-1688 (2012).
    [29] S. Y. Ryu, D. S. Kim, J. D. Jeon, S. Y. Kwak, “ Pore Size Distribution Analysis of Mesoporous TiO 2 Spheres by 1 H Nuclear Magnetic Resonance (NMR) Cryoporometry,” J. Phys. Chem. C, 114, 17440–17445 (2010).
    [30] JH. Pan, G. Han, R. Zhou, XS. Zhao, “Hierarchical N-doped TiO 2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets,” Chem. Commun., 47, 6942-6944 (2011).
    [31] Z. He, Z. Zhu, J. Li, J. Zhou, N, Wei, “ Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes,” J. Hazard. Mater. 190, 133-139 (2011).
    [32] X. Peng, L. Xiong, W. Heng, L. Guanghui, S. Ting, Z. Ziming, K. Zhiliang , R. Yaoguang, X. Mi, L. Linfeng, H. Min, Y. Ying, C. Wei, L. Tongfa, Z. Meili, H. Hongwei, “Mesoporous nitrogen-doped TiO 2 sphere applied for quasi-solid-state dye-sensitized solar cell,” Nanoscale Res. Lett., 6,606-610 (2011).
    [33] J. W. Shi, H. J. Cui, X. Zong, C. S. Chen, J. Chen, B. Xu, W. Yang, L. Wang, M. L. Fu, “Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance,” Appl. Catal. A, 435, 86-92 (2012).
    [34] B. Ahmmad, Y. Kusumoto, MS. Islam, “One-step and large scale synthesis of non-metal doped TiO2 submicrospheres and their photocatalytic activity, ” Adv. Powder Technol.,21, 292-297 (2010).
    [35] A. Zaleska, “ Doped-TiO 2 : A Review,” Recent Pat. Eng., 2, 157-164 (2008).
    [36] A.L. Linsebigler, G. Lu, J.T.Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., 95, 735-758 (1995).
    [37] K. Wilke, H.D. Breuer, “The influence of transition metal doping on the physical and photocatalytic properties of titania,” J. Photochem. Photobiol. A, 121, 49-53 (1999).
    [38] Z. Bian, J. Zhu, F. Cao Y. Lu, H. Li, “In situ encapsulation of Au nanoparticles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability,” Chem. Commun., 25, 3789-3791 (2009).
    [39] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Sci., 293, 269-271, (2001).
    [40] C. Burda, Y. B Lou, X. B. Chen, A. C. S. Samia, J. Stout, J. L. Gole, “ Enhanced nitrogen doping in TiO2 nanoparticles,” Nano. Lett., 3, 1049-1051 (2003).
    [41] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, “Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations,” J. Phys. Chem. B, 109, 11414-11419 (2005).
    [42] P. Feng, C. Lingfeng, Y. Hao, W. Hongjuan, Y. Jian, “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity,” J. Solid State Chem.,181, 130-136 (2008).
    [43] 張育誠,研究微波加熱技術在奈米材料之合成、自組裝級分解機構,國立清華大學原子科學系碩士班,中華民國92年6月。
    [44] 蘇裕勝,利用液相組合式合成法合成苯并米雜環分子庫,國立東華大學化學研究所,中華民國92年6月。
    [45] S. Komarneni, R. K. Rajha, H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Mater. Chem. Phys., 60, 50-54 (1999).
    [46] J. A. Ayllon, A. M. Piero,L. Saadoun, E. Vigil, X. Domenech, J. Peral, “Preparation of anatase powders from fluorine-complexed titanium(IV) aqueous solution using microwave irradiation,” J. Mater. Chem., 10, 1911-1914 (2000).
    [47] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, G. D. Will, “Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald Ripening by a Microwave Hydrothermal Process,” Langmuir, 22, 2016- 2027(2006).
    [48] A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, “Charge Carrier Dynamics of Standard TiO2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy,” J. Phys. Chem. B, 103, 3120-3127 (1999).
    [49] 楊采穎,二氧化鈦奈米棒的製備與應用:從光催化反應到染料敏化太陽能電池,國立台北科技大學有機高分子研究所,中華民國97年6月。
    [50] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Inf. Bull. - I. U. P. A. C., 57, 603-619 (1985).
    [51] H. H. Ou, S.L. Lo, C.H. Liao, “N-Doped TiO2 Prepared from Microwave-Assisted Titanate Nanotubes(NaxH2-xTi3O7): The Effect of Microwave Irradiation during TNT Synthesis on the Visible Light Photoactivity of N-Doped TiO2,” J. Phys. Chem., 115, 4000- 4007 (2011).
    [52] F. Dong, W. Zhao, Z. Wu, S. Guo, “Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition,” J. Hazard. Mater., 162, 763–770 (2009).
    [53] T. Nolan, D. Synnot, M. Seery, S. Hinder, A. Van Wassenhaven, S. Pillai, “Effect of N-Doping on the Photocatalytic Activity of Sol–Gel TiO2,” J. Hazard. Mater., 211, 88-94 (2012).
    [54] J. Jiang, F. Gu, W. Shao, C. Li “Fabrication of Spherical Multi-Hollow TiO2 Nanostructures for Photoanode Film with Enhanced Light-Scattering Performance,” Ind. Eng. Chem. Res., 51, 2838–2845 (2012).
    [55] S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, “Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity, ” Appl. Catal., B, 119, 146–155 (2012).
    [56] U. Schubert, “Chemical Modification of Titanium Alkoxides for Sol-Gel Processing,” J. Mater. Chem., 15, 3701-3715 (2005).
    [57] U. Schubert, N. Hüsing, A. Lorenz, “Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides,” Chem. Mater., 7, 2010-2027 (1995).
    [58] U.Schubert, “Organically Modified Transition Metal Alkoxides - Chemical Problems and Structural Issues on the Way to Materials Syntheses,” Acc. Chem.Res., 40, 730-737 (2007).
    [59] R. Lichtenberger, U. Schubert, “Chemical Modification of Aluminium Alkoxides for Sol-Gel Processing,” J.Mater.Chem., 40, 9287-9296 (2010).
    [60] X. Chen, Y. Lou, A. Samia, C. Burda, J. Gole, “Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder,” Adv. Funct. Mater., 15, 41-49 (2005).

    下載圖示 校內:2014-08-21公開
    校外:2014-08-21公開
    QR CODE