| 研究生: |
朱容生 Ju, Lung-Sheng |
|---|---|
| 論文名稱: |
利用微波溶熱法與胺類螯合劑合成摻雜氮之二氧化鈦介孔次微米球及其光催化性質 Synthesis of N doped TiO2 mesoporous spheres using different amine agents via microwave-assisted solvothermal method and their photocatalytic performances |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | N-TiO2 、氮源 、微波 、溶熱法 |
| 外文關鍵詞: | N-doped TiO2, amine chelating agent, microwave, solvothermal reaction |
| 相關次數: | 點閱:118 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用溶膠凝膠法,分別以二次乙基三胺(DETA)、二乙基胺(DEA)、二甲胺(DMA)、三甲基胺(TMA)為氮源,十六胺(HDA)為結構劑,異丙氧基鈦(TIP)為鈦的前驅物,使用聚焦式微波反應器,僅需190℃、一小時的溶熱反應,即可合成粒徑為400-600 nm、淡黃色的純銳鈦礦相N-TiO2介孔次微米球。從UV-Visible 吸收光譜圖發現,N-TiO2在可見光區域的光吸收率明顯較P25高。且經由XPS分析顯示,所得到的氮摻雜有兩種形式,分別為取代態和間隙態,表示氮有確實進入到TiO2晶格內,同時本研究也發現,氮鍵結的形式會隨著胺類螯合劑種類以及添加之Ti/N配比不同,而產生明顯的改變,同時也影響了次微米球的比表面積與光催化活性。最後,以羅丹明B水溶液在可見光(420nm)照耀下的脫色率作為光催化活性依據,發現N-TiO2的光催化活性比P25要高,且當氮以間隙型態(Ti-O-N)摻入的方式,較取代型態的方式(Ti-N)摻入,其在可見光的吸收愈高,而光催化效果也愈好。在本研究所合成之N-TiO2樣品中,以三甲基胺(TMA)作為氮源、且N/Ti添加莫耳比為0.9的樣品,因為其間隙型態的含氮量是所有N-TiO2樣品中最高的,因此具有最高的光催化效率。
In this study, a novel and facile method is developed to synthesize N-TiO2 mesoporous microspheres via microwave-assisted solvothermal reaction route. Sol-gel process using titanium isopropoxide as precursors, hexadecylamine as structure-directing agent, and diethylenetriamine、diethylamine、dimethylamine、trimethylamine as amine agents, respectively. The size of the microsphere was ranging from 400 to 600 nm in anatase phase can be obtained using the current method under 190℃ in 1 hour. A shift of the absorption edge to a lower energy and a stronger absorption in the visible light region were observed. Both substitutional and interstitial nitrogen-doped titanium dioxides were prepared. Their surface states were clarified by XPS spectra. The nitrogen bonding form changed from different N/Ti ratio and different amine agents, and the specific surface area、photodegradation was different. The results of photodegradation or the organic pollutant rhodamine B in the visible light irradiation (420 nm) suggested that the TiO2 photocatalysts after nitrogen doping were greatly improved compared with Degussa P-25. The results showed that the photodegradatio, and the trimethylamine (N/Ti ratio =0.9)was obviously prior to others N-doped TiO2, because its interstitial is the height in N-doped TiO2 sample. Moreover, the visible light activity of interstitial N-doped TiO2 is higher than that of
substitutional N-doped TiO2 .
[1] C. Burda, Y.B. Lou, X.B. Chen, A.C.S. Samia, J. Stout, J.L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano. Lett, 3, 1049-1051 (2003).
[2] J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, ” J. Phys. Chem. B, 108, 1230-1240 (2004).
[3] S.I. Shah, W. Li, C.P. Huang, O. Jung, C. Ni, “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles,” Proc. Natl. Acad. Sci. USA., 99, 6482-6486 (2002).
[4] Z. Bian, J. Zhu, F. Cao, Y. Lu, H. Li, “In situ encapsulation of Au nano- particles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability,” Chem. Commun., 3789-3791 (2009).
[5] J. Yin, L. Xiang, X. Zhao, “Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties,” Appl. Phys. Lett., 90, 113112- 113112-3 (2007).
[6] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293, 269-271 (2001).
[7] Z. Xiong, X.S. Zhao, “Nitrogen-Doped Titanate-Anatase Core - Shell Nanobelts with Exposed {101} Anatase Facets and Enhanced Visible Light
Photocatalytic Activity,” J. Am. Chem. Soc., 134, 5754 – 5757 (2012).
[8] K.Vinodgopal, P. Kamat, “Electrochemically Assisted photocatalysis using nanocrystalline semiconductor thin films,” Sol. Energ. Mat. Sol. C, 38, 401-410 (1995).
[9] H. Irie, Y. Watanabe, K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B, 107, 5483-5486 (2003).
[10] K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, K. Ohira, M. Kouya, K. Kumada, “Effect of thermal treatment on photocatalytic activity of N-doped TiO2 particles under visible light,” Thin Solid Films, 516, 7482–7487 (2008).
[11] S. Han, F. Wang, S. Guo, J. Sun, L. Yang, L. Jiang, D. He, “Study on preparation and application of porous TiO2 photocatalysis material,” Adv. Mater. Res. 183, 1799-1802 (2011).
[12] Y. Chen, S. Zhang, Y. Yu, H. Wu, S. Wang, B. Zhu, W. Huang, S. Wu, “Synthesis, Characterization, and Photocatalytic Activity of N‐Doped TiO2 Nanotubes,” J. Dispers. Sci. Tech., 29, 245–249 (2008).
[13] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surfaces Principles, mechanisms, and selected results,” Chem. Rev., 95, 738-758 (1995).
[14] F. Zhang, N. Huang, P. Yang, X. Zeng, Y. Mao, Z. Zheng, Z. Zhou, X. Liu “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Technol., 84, 476–479 (1996).
[15] 戴妤娟,以微波溶熱法製備奈米級二氧化鈦及其光催化性質研究,國立成功大學資源工程研究所,中華民國101年6月。
[16] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Advan. Mater., 11, 1307-1311 (1999).
[17] Y. Yu, D. Xu, “Single-crystalline TiO2 nanorods : Highly active and easily recycled photocatalysts,” Appl. Catal. B-Environ., 73, 166–171 (2007).
[18] K. Kakiuchi, E. Hosono, H. Imai, T. Kiura, S. Fujihara, “(111)-faceting of low-temperature processed rutile TiO2 rods,” J. Cryst. Growth, 293, 541-545 (2006).
[19] 陳富亮,最新奈米光觸媒應用技術,林斯頓國際,46-47 (2003)。
[20] J. Livage, M. Henry, C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Prog. Solid State Chem., 18, 259-341 (1988).
[21] B.S. Huang, H.H. Tseng, M.Y. Wey, “Comparison of visible-light-driven routes of anion-doped TiO2 and composite photocatalyst,” J. Ceram. Soc. Jpn., 117, 753-758 (2009).
[22] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Am. Ceram. Soc. Bull., 67, 1673–1678 (1988).
[23] H. Colfen, S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew. Chem. Int. Edit. 42, 2350-2365 (2003).
[24] Y. Huang, C. M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires,” Pure. Appl. Chem. 76, 2051-2068 (2004).
[25] C. Murray, S. Sun, H. Doyle, T. Betley, “Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices,” Mrs. Bull. 26, 985-991 (2001).
[26] D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells,” Adv. Mater. 21, 2205-2207 (2009).
[27] D. Chen, L. Cao, F. Huang, P. Imperia, Y.B Cheng, R.A. Caruso, “Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm),” J. Am. Chem. Soc. 132, 4438–4444 (2010).
[28] D. Wang, S. Lyu, “Preparation of Mesoporous TiO2 Spheres via Sol-Gel Assisted Hydrothermal Method Using Double Templates,” Chin. J. Catal. 33, 1681-1688 (2012).
[29] S. Y. Ryu, D. S. Kim, J. D. Jeon, S. Y. Kwak, “ Pore Size Distribution Analysis of Mesoporous TiO 2 Spheres by 1 H Nuclear Magnetic Resonance (NMR) Cryoporometry,” J. Phys. Chem. C, 114, 17440–17445 (2010).
[30] JH. Pan, G. Han, R. Zhou, XS. Zhao, “Hierarchical N-doped TiO 2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets,” Chem. Commun., 47, 6942-6944 (2011).
[31] Z. He, Z. Zhu, J. Li, J. Zhou, N, Wei, “ Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes,” J. Hazard. Mater. 190, 133-139 (2011).
[32] X. Peng, L. Xiong, W. Heng, L. Guanghui, S. Ting, Z. Ziming, K. Zhiliang , R. Yaoguang, X. Mi, L. Linfeng, H. Min, Y. Ying, C. Wei, L. Tongfa, Z. Meili, H. Hongwei, “Mesoporous nitrogen-doped TiO 2 sphere applied for quasi-solid-state dye-sensitized solar cell,” Nanoscale Res. Lett., 6,606-610 (2011).
[33] J. W. Shi, H. J. Cui, X. Zong, C. S. Chen, J. Chen, B. Xu, W. Yang, L. Wang, M. L. Fu, “Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance,” Appl. Catal. A, 435, 86-92 (2012).
[34] B. Ahmmad, Y. Kusumoto, MS. Islam, “One-step and large scale synthesis of non-metal doped TiO2 submicrospheres and their photocatalytic activity, ” Adv. Powder Technol.,21, 292-297 (2010).
[35] A. Zaleska, “ Doped-TiO 2 : A Review,” Recent Pat. Eng., 2, 157-164 (2008).
[36] A.L. Linsebigler, G. Lu, J.T.Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., 95, 735-758 (1995).
[37] K. Wilke, H.D. Breuer, “The influence of transition metal doping on the physical and photocatalytic properties of titania,” J. Photochem. Photobiol. A, 121, 49-53 (1999).
[38] Z. Bian, J. Zhu, F. Cao Y. Lu, H. Li, “In situ encapsulation of Au nanoparticles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability,” Chem. Commun., 25, 3789-3791 (2009).
[39] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Sci., 293, 269-271, (2001).
[40] C. Burda, Y. B Lou, X. B. Chen, A. C. S. Samia, J. Stout, J. L. Gole, “ Enhanced nitrogen doping in TiO2 nanoparticles,” Nano. Lett., 3, 1049-1051 (2003).
[41] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, “Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations,” J. Phys. Chem. B, 109, 11414-11419 (2005).
[42] P. Feng, C. Lingfeng, Y. Hao, W. Hongjuan, Y. Jian, “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity,” J. Solid State Chem.,181, 130-136 (2008).
[43] 張育誠,研究微波加熱技術在奈米材料之合成、自組裝級分解機構,國立清華大學原子科學系碩士班,中華民國92年6月。
[44] 蘇裕勝,利用液相組合式合成法合成苯并米雜環分子庫,國立東華大學化學研究所,中華民國92年6月。
[45] S. Komarneni, R. K. Rajha, H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Mater. Chem. Phys., 60, 50-54 (1999).
[46] J. A. Ayllon, A. M. Piero,L. Saadoun, E. Vigil, X. Domenech, J. Peral, “Preparation of anatase powders from fluorine-complexed titanium(IV) aqueous solution using microwave irradiation,” J. Mater. Chem., 10, 1911-1914 (2000).
[47] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, G. D. Will, “Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald Ripening by a Microwave Hydrothermal Process,” Langmuir, 22, 2016- 2027(2006).
[48] A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, “Charge Carrier Dynamics of Standard TiO2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy,” J. Phys. Chem. B, 103, 3120-3127 (1999).
[49] 楊采穎,二氧化鈦奈米棒的製備與應用:從光催化反應到染料敏化太陽能電池,國立台北科技大學有機高分子研究所,中華民國97年6月。
[50] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Inf. Bull. - I. U. P. A. C., 57, 603-619 (1985).
[51] H. H. Ou, S.L. Lo, C.H. Liao, “N-Doped TiO2 Prepared from Microwave-Assisted Titanate Nanotubes(NaxH2-xTi3O7): The Effect of Microwave Irradiation during TNT Synthesis on the Visible Light Photoactivity of N-Doped TiO2,” J. Phys. Chem., 115, 4000- 4007 (2011).
[52] F. Dong, W. Zhao, Z. Wu, S. Guo, “Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition,” J. Hazard. Mater., 162, 763–770 (2009).
[53] T. Nolan, D. Synnot, M. Seery, S. Hinder, A. Van Wassenhaven, S. Pillai, “Effect of N-Doping on the Photocatalytic Activity of Sol–Gel TiO2,” J. Hazard. Mater., 211, 88-94 (2012).
[54] J. Jiang, F. Gu, W. Shao, C. Li “Fabrication of Spherical Multi-Hollow TiO2 Nanostructures for Photoanode Film with Enhanced Light-Scattering Performance,” Ind. Eng. Chem. Res., 51, 2838–2845 (2012).
[55] S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, “Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity, ” Appl. Catal., B, 119, 146–155 (2012).
[56] U. Schubert, “Chemical Modification of Titanium Alkoxides for Sol-Gel Processing,” J. Mater. Chem., 15, 3701-3715 (2005).
[57] U. Schubert, N. Hüsing, A. Lorenz, “Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides,” Chem. Mater., 7, 2010-2027 (1995).
[58] U.Schubert, “Organically Modified Transition Metal Alkoxides - Chemical Problems and Structural Issues on the Way to Materials Syntheses,” Acc. Chem.Res., 40, 730-737 (2007).
[59] R. Lichtenberger, U. Schubert, “Chemical Modification of Aluminium Alkoxides for Sol-Gel Processing,” J.Mater.Chem., 40, 9287-9296 (2010).
[60] X. Chen, Y. Lou, A. Samia, C. Burda, J. Gole, “Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder,” Adv. Funct. Mater., 15, 41-49 (2005).