簡易檢索 / 詳目顯示

研究生: 胡建兵
Alvin, Pires
論文名稱: 碳奈米纖維對泡沫ECC於3D列印之影響
Influence of Carbon Nanofibers on Foam ECC Concrete for 3D Printing Applications
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 199
外文關鍵詞: Carbon Nanofiber (CNF), Engineered Cementitious Concrete (ECC), Foamed Concrete, 3D Concrete Printing, Buildability Test, Rheology, Compressive Strength, Tensile Strength, Pore Structure, Ductility, Nano-reinforcement
相關次數: 點閱:17下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The integration of 3D printing in the construction industry is transforming traditional building practices by enabling automation, design flexibility, and reduced labor and material waste. However, the success of 3D printing in structural applications hinges on the development of advanced cementitious materials that offer not only good printability but also adequate mechanical strength and long-term durability. Engineered Cementitious Composites (ECC), known for their superior ductility and strain-hardening behavior, show strong potential for 3D printing applications.
    To overcome these limitations, this study investigates the effect of incorporating carbon nanofibers (CNF) into ECC and foamed ECC mixtures with different densities (1000, 1700, and 2077 kg/m³). CNF was selected as a nano-reinforcement agent due to its high tensile strength, high aspect ratio, and ability to improve the matrix microstructure and crack bridging capacity. Experimental work was conducted to evaluate both fresh and hardened properties of the mixtures. Fresh-state tests included mini-slump flow, flow retention, setting time, and a detailed rheological analysis using a rotational rheometer to assess yield stress and plastic viscosity. Hardened properties included compressive strength, tensile strength and pore structure. Finally, a 3D printing buildability test was performed to evaluate the structural stability of printed layers.
    In the hardened state, mechanical performance was assessed through compressive strength and direct tensile strength testing at 7 and 28 days. The results revealed that CNF addition at an optimal dosage of 0.05% (by weight of cement) significantly improved tensile strength, ductility, and energy absorption capacity across all density levels, with the most pronounced effects observed in medium-density mixtures (1700 kg/m³). Microstructural analyses using Micro-CT confirmed that CNF contributed to matrix densification and pore size refinement. In the buildability test, CNF enhanced mixtures demonstrated better layer retention, reduced deformation, and higher build heights, particularly in the ECC and 1700 kg/m³ series, indicating improved structural integrity during the printing process.

    ABSTRACT iii ACKNOWLEDGEMENT iv TABLE OF CONTENTS v LIST OF TABLES ix LIST OF FIGURES x CHAPTER I INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objective, Purpose, and Output 3 1.3. Research Method and Process 4 1.4. Research Scopes and Limitations 5 CHAPTER 2 LITERATURE REVIEW 7 2.1. Engineered Cementitious Composites (ECC) Concrete 7 2.1.1. Cementitious Materials 9 2.1.2. Fine Aggregate 10 2.1.3. Water-to-Binder Ratio 11 2.1.4. Superplasticizer 13 2.1.5. Fiber Reinforcement 14 2.2. Lightweight Foam Concrete (LFC) 16 2.2.1. Foam Concrete Problems 17 2.2.2. Foaming Agent 19 2.3. Carbon Nanofiber (CNF) 21 2.3.1. Carbon Nanofiber Dispersed Techniques 23 2.3.2. Engineered Cementitious Composites with Carbon Nanofiber (CNF-ECC) 24 2.3.3. Lightweight Foam Concrete with Carbon Nanofiber (CNF-LFC) 26 2.4. 3D Printing Concrete 29 2.4.1. 3D Printing-Engineered Cementitious Composites (3DP-ECC) 32 2.4.2. 3D Printing-Lightweight Foam Concrete (3DP-LFC) 34 2.5. Future Potential of 3D-Printed Foam ECC 37 CHAPTER III MATERIAL AND EXPERIMENTAL METHODS 39 3.1. Introduction 39 3.2. Experimental Parameters 40 3.2.1. Fiber Parameters 41 3.2.2. Mix Design Parameters 42 3.2.3. CNF Parameters 44 3.2.4. CNF Surface Treatment Parameters 45 3.3. Specimen Fabrication 48 3.3.1. CNF Preparation 48 3.3.2. Specimens Mixing 51 3.3.3. Curing Treatment 54 3.4. Test Parameters 55 3.4.1. Density 55 3.4.2. Mini Slump Test 57 3.4.3. Flowability for Different Time Analysis 58 3.4.4. Rheology 59 3.4.5. Setting Time 60 3.4.6. Microstructure Analysis 61 3.4.7. Compressive Test 63 3.4.8. Direct Tensile Test 65 3.4.9. 3D Printing Buildability 67 CHAPTER IV FRESH PROPERTIES OF CNF-ECC AND CNF-LFECC 69 4.1. Density Test 69 4.1.1. Wet Density 69 4.1.2. Hardened Density 70 4.2. Mini-Slump Test 73 4.2.1. Deviation Analysis of Designed and Measured Density for Mini-Slump 74 4.2.2. CNF-Induced Changes in Mini-Slump Behavior 76 4.3. Flowability for Different Time Analysis 77 4.3.1. Deviation Analysis of Designed and Measured Density for Flowability 79 4.3.2. CNF-Induced Changes in Flowability Behavior 81 4.4. Rheology 83 4.4.1. Deviation Analysis of Designed and Measured Density for Rheology 87 4.4.2. CNF-Induced Changes in Rheological Behavior 89 4.5. Setting Time Analysis 91 4.5.1. Deviation Analysis of Designed and Measured Density for Setting Time 93 4.5.2. CNF-Induced Changes in Setting Time Behavior 95 CHAPTER V MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CNF-ECC AND CNF-LFECC 98 5.1. Micro CT Pore Structure Analysis 98 5.1.1. Effect of Design Density on Microstructure Porosity 103 5.1.2. Influence of CNF Addition on Microstructure Porosity 104 5.2. Compressive Strength Test 106 5.2.1. Effect of Design Density on Compressive Strength 110 5.2.2. Influence of CNF Addition on Compressive Strength 113 5.2.3. Nucleation Effects Induced by PVA Fiber Incorporation 117 5.3. Direct Tensile Test 119 5.3.1. Effect of Design Density on Tensile Strength 124 5.3.2. Influence of CNF Addition on Tensile Strength 128 5.3.3. Failure Pattern 130 CHAPTER VI 3D PRINTING BUILDABILITY OF CNF-ECC AND CNF-LFECC 138 6.1. Wet Density Test 141 6.2. Buildability Test 142 6.2.1. Buildability Assessment of 3D Printed Concrete with Varying Designed Densities 145 6.2.2. Buildability Evaluation of 3D Printed Concrete with Varying Carbon Nanofiber (CNF) Volume Fractions 150 CHAPTER VII CONCLUSIONS AND SUGGESTIONS 156 7.1. Conclusion 156 7.2. Suggestion 158 REFERENCES 160 APPENDIX A DENSITY TEST 173 APPENDIX B MINI-SLUMP TEST 174 APPENDIX C MICRO CT PORE STRUCTURE ANALYSIS 175 APPENDIX D COMPRESSIVE STRENGTH TEST 178 APPENDIX E DIRECT TENSILE TEST 182 APPENDIX F 3D PRINTING BUILDABILITY TEST 184

    Ahmed Sbia, L., Peyvandi, A., Soroushian, P., Lu, J., & Balachandra, A. M. (2014). Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber. Advances in Civil Engineering, 2014. https://doi.org/10.1155/2014/854729
    Akono, A. T. (2020). Nanostructure and fracture behavior of carbon nanofiber-reinforced cement using nanoscale depth-sensing methods. Materials, 13(17). https://doi.org/10.3390/ma13173837
    Alharbi, Y. R., Abadel, A. A., Alqarni, A. S., & Binyahya, A. S. (2024). Compressive behavior of metakaolin-fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures. Materials Science-Poland, 42(4), 180–196. https://doi.org/10.2478/msp-2024-0049
    Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015a). Properties and applications of foamed concrete; A review. In Construction and Building Materials (Vol. 101, pp. 990–1005). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2015.10.112
    Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015b). Properties and applications of foamed concrete; A review. In Construction and Building Materials (Vol. 101, pp. 990–1005). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2015.10.112
    An, D., Rahman, M., Zhang, Y. X., & Yang, R. (Chunhui). (2025). Effects of Key 3D concrete printing process parameters on layer shape: Experimental study and Smooth Particle Hydrodynamics modelling. Case Studies in Construction Materials, 22. https://doi.org/10.1016/j.cscm.2025.e04718
    Aramburu, A., Calderon-Uriszar-Aldaca, I., & Puente, I. (2022). 3D printing effect on the compressive strength of concrete structures. Construction and Building Materials, 354. https://doi.org/10.1016/j.conbuildmat.2022.129108
    Ardhira, P. J., Ardra, R., Harika, M., & Sathyan, D. (2023). Study on fibre reinforced foam concrete-a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.551
    ASTM C230/C230M-23a. (2023). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International.
    ASTM C403. (2023). Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance.
    Barbhuiya, S., Adak, D., & Das, B. B. (2024). Advances and perspectives in engineered cementitious composites: a comprehensive review. Magazine of Concrete Research, 76(20), 1165–1184. https://doi.org/10.1680/jmacr.24.00047
    Bedarf, P., Szabo, A., Zanini, M., & Dillenburger, B. (2024). Robotic 3D Printing of Geopolymer Foam for Lightweight and Insulating Building Elements. 3D Printing and Additive Manufacturing, 11(1), 1–9. https://doi.org/10.1089/3dp.2023.0183
    Bheel, N., Ali, M. O. A., Kırgız, M. S., Shafiq, N., & Gobinath, R. (2023). Effect of graphene oxide particle as nanomaterial in the production of engineered cementitious composites including superplasticizer, fly ash, and polyvinyl alcohol fiber. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.010
    Bridges, S., & Robinson, L. (2020). Rheology. A Practical Handbook for Drilling Fluids Processing, 3–26. https://doi.org/10.1016/B978-0-12-821341-4.00001-4
    Chen, H., Liang, K., Chow, C. L., & Lau, D. (2024). Enhancing the engineering performance of lightweight limestone calcined clay cement concrete using used engine oil as a foam stabilizer. Journal of Building Engineering, 95. https://doi.org/10.1016/j.jobe.2024.110187
    Cho, S., van Rooyen, A., Kearsley, E., & van Zijl, G. (2022). Foam stability of 3D printable foamed concrete. Journal of Building Engineering, 47. https://doi.org/10.1016/j.jobe.2021.103884
    Chung, S. Y., Kim, J. S., Han, T. S., Stephan, D., Kamm, P. H., & Elrahman, M. A. (2022). Characterization of foamed concrete with different additives using multi-scale micro-computed tomography. Construction and Building Materials, 319. https://doi.org/10.1016/j.conbuildmat.2021.125953
    Decký, M., Drusa, M., Zgútová, K., Blaško, M., Hájek, M., & Scherfel, W. (2016). Foam Concrete as New Material in Road Constructions. Procedia Engineering, 161, 428–433. https://doi.org/10.1016/j.proeng.2016.08.585
    Dong, H., & Wang, J. (2023). Carbon nanofibers and polyvinyl-alcohol fiber hybrid-reinforced high-performance concrete: Mechanical property, chloride penetration resistance, and material characterization. Construction and Building Materials, 399. https://doi.org/10.1016/j.conbuildmat.2023.131891
    Dong, S., Han, B., Ou, J., Li, Z., Han, L., & Yu, X. (2016). Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 72, 48–65. https://doi.org/10.1016/j.cemconcomp.2016.05.022
    Du, M., Jing, H., Gao, Y., Su, H., & Fang, H. (2020). Carbon nanomaterials enhanced cement-based composites: Advances and challenges. In Nanotechnology Reviews (Vol. 9, Issue 1, pp. 115–135). De Gruyter. https://doi.org/10.1515/ntrev-2020-0011
    Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2018). Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Construction and Building Materials, 165, 735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
    Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Composite Structures, 209, 45–59. https://doi.org/10.1016/j.compstruct.2018.10.092
    Falliano, D., Parmigiani, S., Suarez-Riera, D., Ferro, G. A., & Restuccia, L. (2022). Stability, flexural behavior and compressive strength of ultra-lightweight fiber-reinforced foamed concrete with dry density lower than 100 kg/m3. Journal of Building Engineering, 51. https://doi.org/10.1016/j.jobe.2022.104329
    Fink, J. (2020). Fluid loss additives. Hydraulic Fracturing Chemicals and Fluids Technology, 89–103. https://doi.org/10.1016/B978-0-12-822071-9.00012-8
    Ghahsareh, F. M., Guo, P., Wang, Y., Meng, W., Li, V. C., & Bao, Y. (2024). Review on material specification, characterization, and quality control of engineered cementitious composite (ECC). In Construction and Building Materials (Vol. 442). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2024.137699
    Goldmann, E., Górski, M., & Klemczak, B. (2021). Recent advancements in carbon nano-infused cementitious composites. In Materials (Vol. 14, Issue 18). MDPI. https://doi.org/10.3390/ma14185176
    H S, B., Bonthu, D., Prabhakar, P., & Doddamani, M. (2020). Three-dimensional printed lightweight composite foams. ACS Omega, 5(35), 22536–22550. https://doi.org/10.1021/acsomega.0c03174
    Haroglu, H., Bulut, M., & Tanyildizi, H. (2025). The influence of carbon nanotube and nano silica on mechanical and microstructural properties of engineered cementitious composites subjected to elevated temperatures. Case Studies in Construction Materials, 22. https://doi.org/10.1016/j.cscm.2025.e04616
    Haruna, S., Adamu, M., Ibrahim, Y. E., Haruna, S. I., Seif Eldin, H. M., Hamza, M. F., & Azab, M. (2023). Multifunctional engineered cementitious composites modified with nanomaterials and their applications: An overview. In Reviews on Advanced Materials Science (Vol. 62, Issue 1). Walter de Gruyter GmbH. https://doi.org/10.1515/rams-2022-0309
    Hogancamp, J., & Grasley, Z. (2017). Dispersion of high concentrations of carbon nanofibers in portland cement mortars. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/9375293
    Hou, L., Li, J., Lu, Z., Niu, Y., Jiang, J., & Li, T. (2019). Effect of nanoparticles on foaming agent and the foamed concrete. Construction and Building Materials, 227. https://doi.org/10.1016/j.conbuildmat.2019.116698
    Hu, X., Xu, L., Li, M., Wang, J., Ran, B., Huang, R., Zhou, X., & Xiong, Y. (2024). Effect of temperature and superplasticizer on hydration of C3S and carbonation products of C-S-H. Construction and Building Materials, 444. https://doi.org/10.1016/j.conbuildmat.2024.137864
    Huang, K., Xie, J., Wang, R., Feng, Y., & Rao, R. (2021). Effects of the combined usage of nanomaterials and steel fibres on the workability, compressive strength, and microstructure of ultra-high performance concrete. Nanotechnology Reviews, 10(1), 304–317. https://doi.org/10.1515/ntrev-2021-0029
    Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. In Polymers (Vol. 15, Issue 11). MDPI. https://doi.org/10.3390/polym15112519
    Islam, M. R., & Hossain, M. E. (2021). State-of-the-art of drilling. Drilling Engineering, 17–178. https://doi.org/10.1016/B978-0-12-820193-0.00002-2
    Jaji, M. B., van Zijl, G. P. A. G., & Babafemi, A. J. (2023). Slag-modified metakaolin-based geopolymer for 3D concrete printing application: Evaluating fresh and hardened properties. Cleaner Engineering and Technology, 15. https://doi.org/10.1016/j.clet.2023.100665
    Jones, M. R., & McCarthy, A. (2005). Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11), 1398–1409. https://doi.org/10.1016/j.fuel.2004.09.030
    Kanda, T., & Li, V. C. (2006). Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC. Journal of Advanced Concrete Technology, Journal of Advanced Concrete Technology, 4(7), 59–72.
    Khan, M. ;, Shakeel, M. ;, Khan, K. ;, Akbar, S. ;, Khan, A. A., Bashir, S., Sangi, A. J., Fareed, S., Khan, M., Shakeel, M., Khan, K., Akbar, S., & Khan, A. (2022). Citation: A Review on Fiber-Reinforced Foam Concrete †. https://doi.org/10.3390/engproc
    Kwon, S. H., Lee, J. S., Koh, K., & Kim, H. K. (2024). Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression. International Journal of Concrete Structures and Materials, 18(1). https://doi.org/10.1186/s40069-023-00658-5
    Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and Structures/Materiaux et Constructions, 45(8), 1221–1232. https://doi.org/10.1617/s11527-012-9828-z
    Lepech, M. D., & Li, V. C. (2008). Large Scale Processing of Engineered Cementitious Composites. ACI Materials Journal, ACI Materials J., 105(4), 358–366.
    Lew Wen-Xin. (2024). Development of Lightweight and Ductile Fiber Reinforced Foam Cementitious Composites for 3D Printing. National Cheng Kung University.
    Li, H., Wang, Y., Yang, X., & Sun, G. (2024). Synthesis and characterization on anti-clay polycarboxylate superplasticizer in concrete. Case Studies in Construction Materials, 20. https://doi.org/10.1016/j.cscm.2024.e03076
    Li, J., Hajimohammadi, A., & Kim, T. (2024). The surface treatment of PVA fibres to enhance fibre distribution and mechanical properties of foam concrete. Construction and Building Materials, 425. https://doi.org/10.1016/j.conbuildmat.2024.136111
    Li, L., Wang, B., & Hubler, M. H. (2022a). Carbon nanofibers (CNFs) dispersed in ultra-high performance concrete (UHPC): Mechanical property, workability and permeability investigation. Cement and Concrete Composites, 131. https://doi.org/10.1016/j.cemconcomp.2022.104592
    Li, L., Wang, B., & Hubler, M. H. (2022b). Carbon nanofibers (CNFs) dispersed in ultra-high performance concrete (UHPC): Mechanical property, workability and permeability investigation. Cement and Concrete Composites, 131. https://doi.org/10.1016/j.cemconcomp.2022.104592
    Li, M., Tan, H., He, X., Jian, S., Li, G., Zhang, J., Deng, X., & Lin, X. (2023). Enhancement in compressive strength of foamed concrete by ultra-fine slag. Cement and Concrete Composites, 138. https://doi.org/10.1016/j.cemconcomp.2023.104954
    Li, V. C. (1992). A Simplified Micromechanical Model of Compressive Strength of Fiber-Reinforced Cementitious Composites. In Cement & Concrete Composites (Vol. 14).
    Li, V. C., Bos, F. P., Yu, K., McGee, W., Ng, T. Y., Figueiredo, S. C., Nefs, K., Mechtcherine, V., Nerella, V. N., Pan, J., van Zijl, G. P. A. G., & Kruger, P. J. (2020). On the emergence of 3D printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC). In Cement and Concrete Research (Vol. 132). Elsevier Ltd. https://doi.org/10.1016/j.cemconres.2020.106038
    Li, V. C., & Kanda, T. (1994). Engineered Cementitious Composites for Structural Applications *.
    Li, V. C., & Leung, C. K. Y. (1992). STEADY-STATE AND MULTIPLE CRACKING OF SHORT RANDOM FIBER COMPOSITES. Journal of Engineering Mechanics, 118(11), 2246–2264.
    Liang, L., Lu, X., Ding, Y., Yu, J., Li, V. C., & Yu, K. (2024). High-modulus engineered cementitious composites: Design mechanism and performance characterization. Cement and Concrete Composites, 154. https://doi.org/10.1016/j.cemconcomp.2024.105782
    Liu, B., Liu, X., Li, G., Geng, S., Li, Z., Weng, Y., & Qian, K. (2022). Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods. Case Studies in Construction Materials, 17. https://doi.org/10.1016/j.cscm.2022.e01519
    Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., Chen, C., Zhang, Y., Pan, J., & Banthia, N. (2021). Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites, 122. https://doi.org/10.1016/j.cemconcomp.2021.104158
    Liu, D., Zhang, Z., Zhang, X., & Chen, Z. (2023). 3D printing concrete structures: State of the art, challenges, and opportunities. In Construction and Building Materials (Vol. 405). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.133364
    Liu, Y., Liu, Z., Rong, H., & Ma, G. (2023). Research on the foaming mechanism of microbial foaming agent and its application in foam concrete. Construction and Building Materials, 379. https://doi.org/10.1016/j.conbuildmat.2023.131041
    Liu, Z., Zhao, K., Hu, C., & Tang, Y. (2016). Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete. Advances in Materials Science and Engineering, 2016. https://doi.org/10.1155/2016/9520294
    Lu, D., Qu, F., Su, Y., & Cui, K. (2024). Nano-engineered the interfacial transition zone between recycled fine aggregates and paste with graphene oxide for sustainable cement composites. Cement and Concrete Composites, 154. https://doi.org/10.1016/j.cemconcomp.2024.105762
    Ma, H., Qian, S., Zhang, Z., Lin, Z., & Li, V. C. (2015). Tailoring Engineered Cementitious Composites with local ingredients. Construction and Building Materials, 101(Part 1), 584–595. https://doi.org/10.1016/j.conbuildmat.2015.10.146
    Mahmoudi, F., Abdalla, J. A., Hawileh, R. A., & Zhang, Z. (2022). An overview of mechanical properties of engineered cementitious composite (ECC) with different percentages of GGBS. Materials Today: Proceedings, 65, 2077–2080. https://doi.org/10.1016/j.matpr.2022.06.448
    Malkapur, S. M., Divakar, L., Narasimhan, M. C., Karkera, N. B., Goverdhan, P., Sathian, V., & Prasad, N. K. (2017). Fresh and hardened properties of polymer incorporated self compacting concrete mixes for neutron radiation shielding. Construction and Building Materials, 157, 917–929. https://doi.org/10.1016/j.conbuildmat.2017.09.127
    Markin, V., Krause, M., Otto, J., Schröfl, C., & Mechtcherine, V. (2021a). 3D-printing with foam concrete: From material design and testing to application and sustainability. Journal of Building Engineering, 43. https://doi.org/10.1016/j.jobe.2021.102870
    Markin, V., Krause, M., Otto, J., Schröfl, C., & Mechtcherine, V. (2021b). 3D-printing with foam concrete: From material design and testing to application and sustainability. Journal of Building Engineering, 43. https://doi.org/10.1016/j.jobe.2021.102870
    Meng, W., & Khayat, K. H. (2016). Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Composites Part B: Engineering, 107, 113–122. https://doi.org/10.1016/j.compositesb.2016.09.069
    Meng, W., & Khayat, K. H. (2018). Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cement and Concrete Research, 105, 64–71. https://doi.org/10.1016/j.cemconres.2018.01.001
    Metaxa, Z. S., Konsta-Gdoutos, M. S., & Shah, S. P. (2013). Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 36(1), 25–32. https://doi.org/10.1016/j.cemconcomp.2012.10.009
    Namsone, E., Šahmenko, G., & Korjakins, A. (2017a). Durability Properties of High Performance Foamed Concrete. Procedia Engineering, 172, 760–767. https://doi.org/10.1016/j.proeng.2017.02.120
    Namsone, E., Šahmenko, G., & Korjakins, A. (2017b). Durability Properties of High Performance Foamed Concrete. Procedia Engineering, 172, 760–767. https://doi.org/10.1016/j.proeng.2017.02.120
    Neubauer, C. M., Yang, M., Jennings, H. M., & Jennings, H. M. (1998). Interparticle Potential and Sedimentation Behavior of Cement Suspensions: Effects of Admixtures.
    Nofar, M., Utz, J., Geis, N., Altstädt, V., & Ruckdäschel, H. (2022). Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. In Advanced Science (Vol. 9, Issue 11). John Wiley and Sons Inc. https://doi.org/10.1002/advs.202105701
    Noushini, A., Vessalas, K., & Samali, B. (2014). Static mechanical properties of polyvinyl alcohol fibre reinforced concrete (PVA-FRC). Magazine of Concrete Research, 66(9), 465–483. https://doi.org/10.1680/macr.13.00320
    Panda, B., & Tan, M. J. (2018). Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International, 44(9), 10258–10265. https://doi.org/10.1016/j.ceramint.2018.03.031
    Paritala, S., Singaram, K. K., Bathina, I., Khan, M. A., & Jyosyula, S. K. R. (2023). Rheology and pumpability of mix suitable for extrusion-based concrete 3D printing – A review. In Construction and Building Materials (Vol. 402). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.132962
    Parveen, S., Rana, S., & Fangueiro, R. (2013). A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. In Journal of Nanomaterials (Vol. 2013). https://doi.org/10.1155/2013/710175
    Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2022). Enhancing the properties of foam concrete 3D printing using porous aggregates. Cement and Concrete Composites, 133. https://doi.org/10.1016/j.cemconcomp.2022.104687
    Peyvandi, A., Sbia, L. A., Soroushian, P., & Sobolev, K. (2013). Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction and Building Materials, 48, 265–269. https://doi.org/10.1016/j.conbuildmat.2013.06.094
    Peyvandi, A., Soroushian, P., Abdol, N., & Balachandra, A. M. (2013). Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste. Carbon, 63, 175–186. https://doi.org/10.1016/j.carbon.2013.06.069
    Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. In Construction and Building Materials (Vol. 221, pp. 787–799). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2019.06.052
    Ramamurthy, K., Kunhanandan Nambiar, E. K., & Indu Siva Ranjani, G. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388–396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
    Raphael, B., Senthilnathan, S., Patel, A., & Bhat, S. (2023). A review of concrete 3D printed structural members. In Frontiers in Built Environment (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fbuil.2022.1034020
    Ren, M., Liu, Y., & Gao, X. (2020). Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings. Energy, 197. https://doi.org/10.1016/j.energy.2020.117262
    Rodhia, R., Sahdeo, S. K., & Kumar, B. (2024). Optimizing foaming agent concentration and recycled fine aggregate content to enhance mechanical and durable properties of foam concrete mixes. Journal of Building Engineering, 97. https://doi.org/10.1016/j.jobe.2024.110801
    Sahmaran, M., Li, M., & Li, V. C. (2009). Transport properties of engineered cementitious composites under chloride exposure. Cement and Concrete Research.
    Sahmenko, G., Sinka, M., Namsone, E., Korjakins, A., & Bajare, D. (2021). Sustainable Wall Solutions Using Foam Concrete and Hemp Composites. Environmental and Climate Technologies, 25(1), 917–930. https://doi.org/10.2478/rtuect-2021-0069
    Shao, X., Wang, Z., Tang, R., Zhao, B., Ning, J., Tian, C., Wang, W., Zhang, Y., & Du, X. (2024). Enhancing Mid-Term Strength and Microstructure of Fly Ash–Cement Paste Backfill with Silica Fume for Continuous Mining and Backfilling Operations. Materials, 17(24). https://doi.org/10.3390/ma17246037
    Shi, M., Yin, G., Zhang, W., Wei, P., Yang, Z., & Zhang, J. (2024). Study on Key Parameters and Design Methods for the Density-Mix Proportion of Rubber-Foamed Concrete. Buildings, 14(8). https://doi.org/10.3390/buildings14082468
    Sikandar, A., & Ali, M. (2023). Composition of Engineered Cementitious Composite with Local Materials, Composite Properties and Its Utilization for Structures in Developing Countries †. Engineering Proceedings, 53(1). https://doi.org/10.3390/IOCBD2023-15179
    Sun, T., Zheng, W., Chen, J., Dai, Y., Li, X., Ruan, X., Yan, X., & He, G. (2021). Nanofibers interpenetrating network mimicking “reinforced-concrete” to construct mechanically robust composite membrane for enhanced CO2 separation. Journal of Membrane Science, 639. https://doi.org/10.1016/j.memsci.2021.119749
    Tambe, Y., & Nemade, P. (2022). Physical and mechanical properties of foamed concrete, a literature review. In Songklanakarin Journal of Science and Technology (Vol. 44, Issue 4, pp. 936–944). Prince of Songkla University. https://doi.org/10.1016/j.matpr.2023.10.105
    Ter Haar, B., Kruger, J., & van Zijl, G. (2023). Off-site construction with 3D concrete printing. In Automation in Construction (Vol. 152). Elsevier B.V. https://doi.org/10.1016/j.autcon.2023.104906
    Uchikawa, H., Hanehara, S., & Sawaki, D. (1997). OOOS-8846(96)00207-4 THE ROLE OF STERIC REPULSIVE FORCE IN THE DISPERSION OF CEMENT PARTICLES IN FRESH PASTE PREPARED WITH ORGANIC ADMIXTURE. In Cement and Concrete Research (Vol. 27, Issue 1).
    Wang, J., Fu, R., & Dong, H. (2023). Carbon nanofibers and PVA fiber hybrid concrete: Abrasion and impact resistance. Journal of Building Engineering, 80. https://doi.org/10.1016/j.jobe.2023.107894
    Wang, S., Lim, J. L. G., & Tan, K. H. (2020). Performance of lightweight cementitious composite incorporating carbon nanofibers. Cement and Concrete Composites, 109. https://doi.org/10.1016/j.cemconcomp.2020.103561
    Wang, S., & Tan, K. H. (2021). Flexural performance of reinforced carbon nanofibers enhanced lightweight cementitious composite (CNF-LCC) beams. Engineering Structures, 238. https://doi.org/10.1016/j.engstruct.2021.112221
    Wang, T., Xu, J., Bai, E., Lv, Y., & Peng, G. (2023). Research on a sustainable concrete synergistic reinforced with carbon fiber and carbon nanofiber: Mechanical properties, durability and environmental evaluation. International Journal of Hydrogen Energy, 48(90), 35366–35386. https://doi.org/10.1016/j.ijhydene.2023.05.234
    Wang, X., Wu, Y., Zhu, P., Yang, J., Li, H., Wang, F., & Yan, X. (2023). Improvement of mechanical properties and carbonation durability of recycled fine aggregate engineered cementitious composites for structural strengthening. Journal of Building Engineering, 76. https://doi.org/10.1016/j.jobe.2023.107277
    Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z., & Du, S. (2021). Large-scale 3D printing concrete technology: Current status and future opportunities. In Cement and Concrete Composites (Vol. 122). Elsevier Ltd. https://doi.org/10.1016/j.cemconcomp.2021.104115
    Xu, L. Y., Huang, B. T., Li, V. C., & Dai, J. G. (2022). High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement and Concrete Composites, 125. https://doi.org/10.1016/j.cemconcomp.2021.104296
    Xu, N., & Qian, Y. (2023). Effects of fiber volume fraction, fiber length, water-binder ratio, and nanoclay addition on the 3D printability of strain-hardening cementitious composites (SHCC). Cement and Concrete Composites, 139. https://doi.org/10.1016/j.cemconcomp.2023.105066
    Yan, S., Zhang, F., Kong, J., Wang, B., Li, H., Yang, Y., & Xing, P. (2020). Mechanical properties of geopolymer composite foams reinforced with carbon nanofibers via modified hydrogen peroxide method. Materials Chemistry and Physics, 253. https://doi.org/10.1016/j.matchemphys.2020.123258
    Yang, E.-H., Garcez, E. O., & Li, V. C. (2014). Micromechanics-Based Optimization of Pigmentable Strain-Hardening Cementitious Composites. Journal of Materials in Civil Engineering, 26(7). https://doi.org/10.1061/(asce)mt.1943-5533.0000914
    Yang, X., Xu, S., Zhao, Z., & Lv, Y. (2022). Strength, Durability, and Microstructure of Foamed Concrete Prepared Using Special Soil and Slag. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142214952
    Ye, B., Zhang, Y., Han, J., & Pan, P. (2019). Effect of water to binder ratio and sand to binder ratio on shrinkage and mechanical properties of High-strength Engineered Cementitious Composite. Construction and Building Materials, 226, 899–909. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.303
    Yoshioka, K., Tazawa, E.-I., Kawai, K., & Enohata, T. (n.d.). Adsorption characteristics of superplasticizers on cement component minerals.
    Yu, K., McGee, W., Ng, T. Y., Zhu, H., & Li, V. C. (2021). 3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties. Cement and Concrete Research, 143. https://doi.org/10.1016/j.cemconres.2021.106388
    Yu, Q., Zhu, B., Li, X., Meng, L., Cai, J., Zhang, Y., & Pan, J. (2023a). Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. Journal of Building Engineering, 72. https://doi.org/10.1016/j.jobe.2023.106621
    Yu, Q., Zhu, B., Li, X., Meng, L., Cai, J., Zhang, Y., & Pan, J. (2023b). Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. Journal of Building Engineering, 72. https://doi.org/10.1016/j.jobe.2023.106621
    Yuanliang, X., Baoliang, L., Chun, C., & Yamei, Z. (2021). Properties of foamed concrete with Ca(OH)2 as foam stabilizer. Cement and Concrete Composites, 118. https://doi.org/10.1016/j.cemconcomp.2021.103985
    Zhang, H., Liang, Q., Shao, M., Jiang, N., Ma, W., Ge, Z., & Šavija, B. (2025). Optimization of low-carbon lightweight foamed concrete using ground circulating fluidized bed fly ash. Journal of Cleaner Production, 489. https://doi.org/10.1016/j.jclepro.2025.144697
    Zhang, Z., Ahmad, N., Shrestha, A., Tang, Z., Cai, Z., Ergashev, R., Kalandarbekov, I., Liu, L., & Li, L. (2025). Investigation of fresh, shrinkage, and mechanical properties in iron sand high-strength engineered cementitious composites: Effects of water-to-binder ratio and fiber volume fraction. Case Studies in Construction Materials, 22. https://doi.org/10.1016/j.cscm.2024.e04138
    Zhao, Z., Qi, T., Zhou, W., Hui, D., Xiao, C., Qi, J., Zheng, Z., & Zhao, Z. (2020). A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. In Nanotechnology Reviews (Vol. 9, Issue 1, pp. 349–368). De Gruyter. https://doi.org/10.1515/ntrev-2020-0023
    Zhou, G., & Su, R. K. L. (2023). A Review on Durability of Foam Concrete. In Buildings (Vol. 13, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/buildings13071880
    Zhou, T., Duan, H., Li, B., Pang, Y., Lou, H., Yang, D., & Qiu, X. (2025). The interaction mechanism of polycarboxylate and β-naphthalene sulfonate superplasticizers: Synergistic adsorption rather than competitive adsorption. Cement and Concrete Research, 191. https://doi.org/10.1016/j.cemconres.2025.107811
    Zhou, W., Zhang, Y., Ma, L., & Li, V. C. (2022a). Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC). Cement and Concrete Composites, 130. https://doi.org/10.1016/j.cemconcomp.2022.104562
    Zhou, W., Zhang, Y., Ma, L., & Li, V. C. (2022b). Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC). Cement and Concrete Composites, 130. https://doi.org/10.1016/j.cemconcomp.2022.104562
    Zhu, B., Pan, J., Nematollahi, B., Zhou, Z., Zhang, Y., & Sanjayan, J. (2019). Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials and Design, 181. https://doi.org/10.1016/j.matdes.2019.108088
    Zhu, Z. Q., Sun, H. X., Qin, X. J., Jiang, L., Pei, C. J., Wang, L., Zeng, Y. Q., Wen, S. H., La, P. Q., Li, A., & Deng, W. Q. (2012). Preparation of poly(acrylic acid)-graphite oxide superabsorbent nanocomposites. Journal of Materials Chemistry, 22(11), 4811–4817. https://doi.org/10.1039/c2jm14210d

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE