簡易檢索 / 詳目顯示

研究生: 連晉
Lien, Jim
論文名稱: 微型呼吸式雙平面陣列質子交換膜燃料電池堆之設計研究
Studies on the Stack Design of the Miniature Double-Planar Array Air-Breathing PEMFC
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 88
中文關鍵詞: 質子交換膜燃料電池快速成型技術呼吸式微型燃料電池
外文關鍵詞: Miniature fuel cell, Air-breathing, Rapid Prototyping, PEMFC
相關次數: 點閱:144下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子交換膜燃料電池屬於新興潔淨能源領域,一般公認其適用於中高功率之交通工具與分散式電源系統,但對於無人飛行載具、機械人或其他小型電子零組件等高電壓低功率需求之應用,微型氫氣燃料電池的發展將較其他種類之燃料電池更具有競爭優勢。因此,本研究之目的乃是設計微型雙平面陣列呼吸式燃料電池堆原型。
    本研究成功開發出體積約為9.5cm x 4.5cm x 16.5cm微型雙平面陣列呼吸式燃料電池堆,並成功將快速成型技術應用於燃料電池本體之製作。電池堆之膜電極組採分段式設計,分為20個單電池,各別單級電池反應面積為1.5cm x 1.5cm(2.25cm2)。經過測試,電池堆在室溫、無外加熱源,氫氣(無增濕)等無外接輔助設備的情況下,電池串聯可於7V時約可達到80.80 mW/cm2之最大功率密度。整體而言,本研究所產生之功率密度與目前國外研究成果相當,在電池堆的整體測試中,發現電池堆的整體性能亦受單級電池影響,而減少其輸出性能。
    藉由本研究之探討,發現相較於平行流道,指叉流道能夠提昇將近30%的性能左右,且經過多級電池的串聯將其工作電壓提高。最後本研究亦提出可利用傳統石墨流道燃料電池作為呼吸式燃料電池性能比較之依據,此電池堆大約可達傳統石墨流道燃料電池最佳性能的23~35%左右。

    Proton exchange membrane fuel cell (PEMFC), belonging to the field of clean power source, is widely applied in automotive applications and distributed power generation. However, PEMFC could also be great alternative in other special applications. For example, some low powered equipment with high voltage such as MAVs, robots or other small components would need a stable miniature PEMFC. Therefore, an air-breathing miniature fuel cell stack with double planar array was designed to study its characteristics performed.
    In this study, the rapid prototyping (RP) technology was applied to manufacture the flow field plates of the fuel cell stack. The stack with a dimension of 9cm length, 4.5cm width and 1.65cm thickness has been developed. A mono-polar assembly method is applied to 20 single cells with a 2.25cm2 electrode area in each single cell.
    In the stack experiment, we tested on the stack with series connection. The result shows that under the condition of passive operation in ambient temperature while the hydrogen without humidity conduction was applied, the maximum power density of the stack could reach to 80.80 mW/cm2 at 7V. This result reaches the state of the art in miniature PEMFC reported from the literature. It also revealed that the interdigitated flow field shows better performance than parallel flow field which has been used in the anode electrode. Interdigitated flow field can enhance its performance up to 30%.

    中文摘要.....................................................................................................I Abstract......................................................................................................II 目錄..........................................................................................................III 表目錄......................................................................................................VI 圖目錄.....................................................................................................VII 第一章 緒論............................................................................................01 1-1 前言..........................................................................................01 1-2 研究動機....................................................................................05 1-3 文獻回顧....................................................................................07 1-4 研究目標....................................................................................12 第二章 理論基礎與設計概念................................................................13 2-1 燃料電池簡介............................................................................13 2-1-1 陽極電極(燃料)...............................................................14 2-1-2 陰極電極(氧化劑)...........................................................15 2-1-3 質子交換膜......................................................................16 2-1-4 流道板..............................................................................18 2-2 質子交換膜燃料電池工作原理與優點....................................22 2-3 電池堆設計原理........................................................................24 第三章 研究方法與實驗設備................................................................28 3-1 燃料供應系統............................................................................31 3-2 增濕系統及加熱系統................................................................32 3-3 資料擷取與膜電極組熱壓合系統............................................34 3-3-1 資料擷取系統..................................................................34 3-3-2 膜電極組製備與設備......................................................37 3-4 石墨流道板單電池....................................................................40 3-5 實驗方法....................................................................................41 3-6 實驗矩陣....................................................................................47 第四章 微型化呼吸式質子交換膜燃料電池流道設計、加工與組裝48 4-1 電池堆設計................................................................................48 4-1-1 膜電極組..........................................................................49 4-1-2 氣密層..............................................................................51 4-1-3 流道..................................................................................51 4-1-3-1 外流道板................................................................53 4-1-3-2 內流道集電板........................................................55 4-1-4 端板..................................................................................55 4-2 快速成型加工............................................................................57 4-3 電池堆組裝................................................................................60 第五章 結果與討論................................................................................63 5-1 石墨流道板單電池....................................................................63 5-1-1 石墨單電池性能測試......................................................63 5-1-2 膜電極組活化..................................................................64 5-1-3 膜電極組性能測試..........................................................65 5-1-4 膜電極組熱壓合成對位墊片之影響..............................67 5-1-5 陰極工作流體對電池性能影響......................................68 5-2 雙平面陣列式質子交換膜燃料電池........................................71 5-2-1 各別電池性能..................................................................72 5-2-2 電池堆串聯整體性能檢測..............................................75 5-2-3 陽極選用不同流道對於此電池堆之影響......................77 5-2-4 本研究成果與世界主要團隊成果比較..........................79 第六章 結論............................................................................................80 第七章 未來工作....................................................................................83 參考文獻..................................................................................................85 自述..........................................................................................................88

    1. “Britannica Online Taiwan”, http://wordpedia.eb.com/
    2. 馬哲儒,“能的來源、去路與有效研究”,經濟部能源局「能源科
    技研究中心推動計劃」94 年度研究成果聯合發表會論文集,民國
    九十四年。
    3. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,第2 版,民
    國九十三年。
    4. 陳震宇,“呼吸式質子交換膜燃料電池堆設計研究”,國立成功大
    學航空太空工程研究所碩士論文,民國九十三年。
    5. Matti Noponen, Tuomas Mennola, Mikko Mikkola, Tero Hottinen,
    Peter Lund, 2002, “Measurement of Current Distribution In A
    Free-Breathing PEMFC, ” Journal of Power Sources,106,
    pp.304-312.
    6. Chen-Yu Chen, Wei-Hsiang Lai, “Studies on The Design of
    Air-Breathing Miniature PEMFC Stack,” Proceeding of World
    Hydrogen Technology Convection 2005, Singapore (2005).
    7. Chen-Yu Chen, Wei-Hsiang Lai, Yun-Che Wen, Biing-Jyh Weng,
    Huey-Jan Chuang, Ching-Yuan Hsieh, Chien-Chih Kung, “Planar
    Array Stack Design of Air-Breathing PEMFC,” Proceeding of The
    2nd Annual Korea-USA Joint Symposium on Hydrogen & Fuel Cell
    Technologies, Columbia, South Carolina
    8. Shou-Shing Hsieh, Sheng-Huang Yang, Jenn-Kun Kuo,Chin-Feng
    Huang, Huang-Hsiu Tsai, “Study of operational parameters on the
    performance of micro PEMFCs with different flow fields,” Energy
    Conversion and Management 47 (2006) 1868–1878
    9. A. Schmitz, M. Tranitz, S.Wagner, R. Hahn, C. Hebling, “Planar
    Self-breathing Fuel Cells,” Journal of Power Sources 118 (2003),
    pp.162-171.10. A.Schmitz, S. Wagner, R. Hahn, H. Uzun, C. Hebling, “Stability of
    Planar PEMFC in Printed Circuit Board Technology,” Journal of
    Power Sources 127 (2004), pp.197-205.
    11. A. Schmitz, M. Tranitz, S.Wagner, S. Eccarius, A. Weil, C. Hebling,
    “Influence of cathode opening size and wetting properties of
    diffusion layers on the performance of air-breathing PEMFCs”
    Journal of Power Sources 154(2006), pp.437-447.
    12. R.Hahn, S. Wagner, A.Schmitz, H.Reichl, “Development of a planar
    micro fuel cell with thin and micro patterning technologies,” Journal
    of Power Sources 131 (2004), pp.73-78.
    13. S.U. Jeong, E.A.Chob, H.J.Kimb, T.H. Limb,I.H. Ohb, S.H. Kim,
    2006, “Effects of cathode open area and relative humidity on the
    performance of air-breathing polymer electrolyte membrane fuel
    cells,” Journal of Power Sources, 158, pp.348-353.
    14. Jeremy P. Meyers, Helen L. Maynard, “Design Considerations for
    Miniaturized PEM Fuel Cells,” Journal of Power Sources 109 (2002),
    pp. 76-88.
    15. Keyur Shah, W.C. Shin, R.S. Besser, “A PDMS Micro Proton
    Exchange Membrane Fuel Cell by Conventional and
    Non-Conventional Microfabrication Techniques,” Sensors and
    Actuators B 97 (2004), pp. 157–167.
    16. 郭振坤,“微型質子交換膜燃料電池元件設計與製作”,國立中山
    大學機械與機電工程學系碩士論文,民國九十三年。
    17. 馮之綸,“微型燃料電池組新型雙極板設計/製作及測試”, 國立
    中山大學機械與機電工程學系碩士論文,民國九十五年。
    18. 李軒誠,“質子交換膜燃料電池研究-MEA 的製程與應用”,國立
    中山大學機械工程研究所碩士論文,民國九十年。
    19. Rongzhong Jiang, Deryn Chu, “Stack Design and Performance of
    Polymer Electrolyte Membrane Fuel Cells,” Journal of Power
    Sources 93 (2001), pp.25-31.20. Manhattan Scientifics Inc., “Powering Portables and Palmtops,” New
    Orleans, (2000).
    21. S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre,Y.I. Park, Y. Saito,
    F.B. Prinz,“ Design and Fabrication of a Micro Fuel Cell Array with
    Flip-flop Interconnection,” Journal of Power Sources 112 (2002),
    pp.410-418.
    22. R. Dillon, S. Srinivasan, A.S. Aricò , V. Antonucci, “International
    Activities in DMFC R&D: Status of Technologies and Potential
    Applications,” Journal of Power Sources 127 (2004), pp.112–126.
    23. 沈軒任,“呼吸式小型六角柱狀直接甲醇燃料電池堆之設計研究”,
    國立成功大學航空太空工程研究所碩士論文,民國九十六年。
    24. Walf Vielstich, Arnold Lamm, Hubert A. Gasteiger, “Fuel Cell
    Handbook,” EG&G Services Parsons, Inc.November (2002). (Sixth
    edition)
    25. J.G. Conley, H.L. Marcus, November, “Rapid Prototyping and Solid
    Free Form Fabrication,” Journal of Manufacturing Science and
    Engineering, 119 (1997), pp.811-816.
    26. Chua Chee Kai, Leong Kah Fai, “Rapid Prototyping – Principles and
    Applications in Manufacturing,” (1997), John Wiley & Sons(Asia),
    Pte Ltd.

    下載圖示 校內:2009-02-05公開
    校外:2011-02-05公開
    QR CODE