簡易檢索 / 詳目顯示

研究生: 呂玉婷
Lu, Yu-Ting
論文名稱: 考量條件風險值下的貝氏驗收抽樣計畫
Risk-embedded Bayesian Acceptance Sampling Plans via Conditional Value-at-Risk
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 89
中文關鍵詞: 貝氏驗收抽樣計畫風險趨避條件風險值設限計畫
外文關鍵詞: Bayesian acceptance sampling, Censoring schemes, Conditional value-at-risk, Risk aversion
相關次數: 點閱:166下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別在型一設限與型二設限下,對具有壽命特性的商品提出了內嵌風
    險模式的貝氏驗收抽樣計畫。此抽樣計畫採用已被廣泛應用於財務領域的條件風
    險值做為衡量風險的工具。該抽樣計畫與目標式為最小化期望成本的傳統貝氏抽
    樣計畫最大不同點在於,除此抽樣計畫是基於最小化條件風險值之外,本論文所
    提出的抽樣計畫,還能夠將決策者本身的風險趨避程度納入模式中考量。為了能
    夠了解決策者的風險趨避態度對於驗收抽樣計畫所造成的影響,本研究比對決策
    者的最佳決策在目標式分別為最小化期望成本與最小化條件風險值的抽樣計畫
    中的差異。除此之外,為了能夠要更加了解這個內嵌風險模式的貝氏驗收抽樣計
    畫,本論文利用參數分析,藉由改變成本以及產品品質相關的參數並同時改變決
    策者的風險趨避程度,來研究參數改變對此內嵌風險模式的貝氏驗收抽樣計畫之
    影響。

    經由數值分析的結果,我們觀察到在包含型一設限且最小化條件風險值的貝
    氏驗收抽樣計畫裡,風險趨避的決策者會傾向選擇較多的樣本個數、較短的觀測
    時間與較小的壞品容忍個數。而在包含型二設限且最小化條件風險值的貝氏驗收
    抽樣計畫裡,風險趨避的決策者則會傾向選擇較少的樣本以及觀測到較少壞品個
    數但是會有較高的決策標準。在這兩種抽樣計畫中,我們都可以觀察到風險值與
    條件風險值都會隨著決策者的風險趨避程度增加而增加; 而接受貨批的機率則會
    隨之減少。

    This dissertation proposes a risk-embedded model to determine Bayesian acceptance sampling plans for lifetime products under Type I and Type II censoring, respectively. This model is based on conditional value-at-risk (CVaR) minimization, which differs from common Bayesian acceptance sampling plans with expected cost minimization, and allows a risk-averse decision maker to factor his or her attitude
    towards risk into the determination that minimizes expected excess cost. With the aim of increasing our understanding of the role a decision maker’s risk aversion plays, this study also contrasts the Bayesian acceptance sampling plans under expected cost minimization and CVaR minimization via numerical analyses for both censoring schemes. Then, in order to elaborate insights into the determination of
    these plans, this work investigates the effects of varying product- and cost-related parameters, as well as the decision maker’s attitude towards risk on the Bayesian
    acceptance sampling plans under CVaR minimization.

    From the numerical studies, we observe that in the sampling plan under Type I censoring, a risk-averse decision maker prefers to choose a large sample size with a smaller tolerated number of failures and shorter test time, which contrasts with a risk-neutral decision maker. However, under Type II censoring, a risk-averse decision maker prefers a smaller sample size and failure number but a greater acceptance constant. In both of these two sampling plans, one also can observe that the value of β-CVaR increases with the level of risk aversion, while simultaneously, the probability of accepting a lot decreases with the level of risk aversion. Moreover, the probability of accepting a lot also decreases in the shape parameter and the unit acceptance cost.

    Abstract in Mandarin Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Bayesian Sampling Plan . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Warranty Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Bayesian Sampling Plan under Type I Censoring . . . . . . . . . . . . . . . 21 3.1 Framework of Bayesian Sampling Plan under Type I Censoring . . . 21 3.1.1 Cost structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Risk-embedded cost minimization via CVaR . . . . . . . . . . 25 3.2 Acceptance Sampling Plan for a Weibull Distributed Product Lifetime 26 3.2.1 Problem-solving . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Numerical Analyses for Bayesian Acceptance Sampling Plans under Type I Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Comparison with the Bayesian acceptance sampling plan under expected cost minimization . . . . . . . . . . . . . . . . . 33 3.3.2 Parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3 Bayesian acceptance sampling plans under Type I censoring with fixed test time . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Conclusion for the Bayesian Sampling Plan under Type I Censoring . 44 4 Risk-embedded Approach for Bayesian Sampling Plan under Type II Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1 Framework of Bayesian Sampling Plan under Type II Censoring . . . 47 4.2 Acceptance Sampling Plan for a Weibull Distributed Product Lifetime 50 4.2.1 CVaR minimization formulation . . . . . . . . . . . . . . . . . 52 4.2.2 Problem-solving . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Numerical Analysis for Bayesian Acceptance Sampling Plans under Type II Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Comparison with the Bayesian acceptance sampling plans in Kwon (1996) . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.2 Parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Bayesian acceptance sampling plans under Type II censoring with fixed sample sizes . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Conclusion for the Bayesian Sampling Plan under Type II Censoring 70 5 Conclusions and Directions for Future Research . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.1 Random Number Generation Reliability Test . . . . . . . . . . . . . . 82 A.2 Case of Increasing Failure Rate . . . . . . . . . . . . . . . . . . . . . 83 A.3 Special Cases for the Risk-embedded sampling plans . . . . . . . . . 85

    Ahmed, S., Gozbasi, O., Savelsbergh, M., Crocker, I., Fox, T., Schreibmann, E.,
    2010. An automated intensity-modulated radiation therapy planning system. INFORMS
    Journal on Computing 22 (4), 568–583.
    Alexander, S., Coleman, T. F., Li, Y., 2006. Minimizing CVaR and VaR for a
    portfolio of derivatives. Journal of Banking & Finance 30 (2), 583–605.
    Artzner, P., Delbaen, F., Eber, J. M., Paris, S. G., Heath, D., 1999. Coherent
    measures of risk. Mathematical Finance 9 (3), 203–228.
    Aslam, M., Jun, C. H., 2009. A group acceptance sampling plan for truncated life
    test having Weibull distribution. Journal of Applied Statistics 36 (9), 1021–1027.
    Bai, J., Pham, H., 2004. Discounted warranty cost of minimally repaired series
    systems. IEEE Transactions on Reliability 53 (1), 37–42.
    Balasooriya, U., Saw, S. L. C., Gadag, V., 2000. Progressively censored reliability
    sampling plans for the Weibull distribution. Technometrics 42 (2), 160–167.
    Berger, J. O., Sun, D., 1993. Bayesian analysis for the Poly-Weibull distribution.
    Journal of the American Statistical Association 88 (424), 1412–1418.
    Bernardo, J. M., Smith, A. F. M., 1994. Bayesian Theory. John Wiley, Chichester.
    Bruno, S. V. B., Sagastizábal, C., 2011. Optimization of real asset portfolio using a
    coherent risk measure: application to oil and energy industries. Optimization and
    Engineering 12 (1-2), 257–275.

    Chen, J. W., Chou, W. L., Wu, H. L., Zhou, H. B., 2004a. Designing acceptance
    sampling schemes for life testing with mixed censoring. Naval Research Logistics
    51 (4), 597–612.
    Chen, J. W., Choy, S. T. B., Li, K. H., 2004b. Optimal Bayesian sampling acceptance
    plan with random censoring. European Journal of Operational Research 155 (3),
    683–694.
    Chen, J. W., Li, K. H., Lam, Y., 2007. Bayesian single and double variable sampling
    plans for the Weibull distribution with censoring. European Journal of Operational
    Research 177 (2), 1062–1073.
    Cheng, L., Wan, Z. P., Wang, G. M., 2009. Bilevel newsvendor models considering
    retailer with CVaR objective. Computers & Industrial Engineering 57 (1), 310–
    318.
    Dimitrov, B., Chukova, S., Khalil, Z., 2004. Warranty costs: an age-dependent
    failure/repair model. Naval Research Logistics 51 (7), 959–976.
    Ding, C., Yang, C. Y., Tse, S. K., 2010. Accelerated life test sampling plans for
    the Weibull distribution under Type I progressive interval censoring with random
    removals. Journal of Statistical Computation and Simulation 80 (8), 903–914.
    Epstein, B., Sobel, M., 1953. Life testing. Journal of the American Statistical Association
    48 (263), 486–502.
    Gotoh, J. Y., Takano, Y., 2007. Newsvendor solutions via conditional value-at-risk
    minimization. European Journal of Operational Research 179 (1), 80–96.
    Graves, S. B., Murphy, D. C., Ringuest, J. L., 2000. Acceptance sampling and
    reliability: the tradeoff between component quality and redundancy. Computers
    & Industrial Engineering 38 (1), 79–91.
    Hsieh, C. C., Lu, Y. T., 2010. Manufacturers return policy in a two-stage supply
    chain with two risk-averse retailers and random demand. European Journal of
    Operational Research 207 (1), 514–523.
    Huang, H. Z., Liu, Z. J., Murthy, D. N. P., 2007. Optimal reliability, warranty and
    price for new products. IIE Transactions 39 (8), 819–827.
    Huang, W. T., Lin, Y. P., 2002. An improved Bayesian sampling plan for exponential
    population with Type I censoring. Communications in Statistics - Theory and
    Methods 31 (11), 2003–2025.
    Huang, W. T., Lin, Y. P., 2004. Bayesian sampling plans for exponential distribution
    based on uniform random censored data. Computational Statistics and Data
    Analysis 44 (4), 669–691.
    Huang, Y. S., Hsieh, C. H., Ho, J. W., 2008. Decisions on an optimal life test
    sampling plan with warranty considerations. IEEE Transactions on Reliability
    57 (4), 643–649.
    Huang, Y. S., Yen, C., 2009. A study of two-dimensional warranty policies with
    preventive maintenance. IIE Transactions 41 (4), 299–308.
    Jun, C. H., Balamurali, S., Lee, S. H., 2006. Variables sampling plans for Weibull
    distributed lifetimes under sudden death testing. IEEE Transactions on Reliability
    55 (1), 53–58.
    Jun, C. H., Lee, H., Lee, S. H., Balamurali, S., 2010. A variables repetitive group
    sampling plan under failure-censored reliability tests for Weibull distribution.
    Journal of Applied Statistics 37 (3), 453–460.
    Kubota, Y., Klayman, B., April, 11 2013. Japan carmakers recall 3.4 million vehicles
    for takata airbag flaw. http://www.reuters.com/article/2013/04/11/
    us-toyota-recall-idUSBRE93A04D20130411, accessed 13 June 2013.
    Kundu, D., 2007. On hybrid censored Weibull distribution. Journal of Statistical
    Planning and Inference 137 (7), 2127–2142.
    Kundu, D., 2008. Bayesian inference and life testing plan for the Weibull distribution
    in presence of progressive censoring. Technometrics 50 (2), 144–154.
    Kundu, D., Howlader, H., 2010. Bayesian inference and prediction of the inverse
    Weibull distribution for type-II censored data. Computational Statistics and Data
    Analysis 54 (6), 1547–1558.
    Kwon, Y. I., 1996. A Bayesian life test sampling plan for products with Weibull
    lifetime distribution sold under warranty. Reliability Engineering & System Safety
    53 (1), 61–66.
    Lam, Y., 1990. An optimal single variable sampling plan with censoring. Statistician
    39 (1), 53–66.
    Lam, Y., 1994. Bayesian variable sampling plans for the exponential distribution
    with Type I censoring. Annals of Statistics 22 (2), 696–711.
    Lam, Y., Choy, S. T. B., 1995. Bayesian variable sampling plans for the exponential distribution with uniformly distributed random censoring. Journal of Statistical
    Planning and Inference 47 (3), 277–293.
    Lin, Y. P., Liang, T. C., Huang, W. T., 2002. Bayesian sampling plans for exponential
    distribution based on Type I censoring data. Annals of the Institute of
    Statistical Mathematics 54 (1), 100–113.
    Martz, H. F., Waller, R. A., 1979. A Bayesian zero-failure (BAZE) reliability demonstration
    testing procedure. Journal of Quality Technology 11 (3), 128–138.
    Matis, T. I., Jayaraman, R., Rangan, A., 2008. Optimal price and pro rata decisions
    for combined warranty policies with different repair options. IIE Transactions
    40 (10), 984–991.
    Murthy, D. N. P., Blischke, W. R., 2000. Strategic warranty management: A lifecycle
    approach. IEEE Transactions on Engineering Management 47 (1), 40–54.
    Nigm, A. M., Ismail, M. A., 1985. Bayesian life test sampling plans for the two
    parameter exponential distribution. Communications in Statistics - Simulation
    and Computation 14 (3), 691–707.
    Noyan, N., 2012. Risk-averse two-stage stochastic programming with an application
    to disaster management. Computers & Operations Research 39 (3), 541–559.
    Pflug, G. C., 2000. Some remarks on the value-at-risk and the conditional value-atrisk.
    In: Uryasev, S. (Ed.), Probabilistic Constrained Optimization: Methodology
    and Applications. Kluwer Academic Publishers, Dordrecht, pp. 272–281.
    Rockafellar, R. T., Uryasev, S., 2000. Optimization of conditional value-at-risk.
    Journal of Risk 2 (3), 21–41.
    Rockafellar, R. T., Uryasev, S., 2002. Conditional value-at-risk for general loss distributions.
    Journal of Banking & Finance 26 (7), 1443–1471.
    Sandoh, H., Fujii, S., 1991. Designing an optimal life test with Type I censoring.
    Naval Research Logistics 38 (1), 23–31.
    Sawik, T., 2011. Selection of supply portfolio under disruption risks. Omega 39 (2),
    194–208.
    Sinha, S., 1986. Reliability and Life Testing. Wiley, New York.
    Soland, R. M., 1968. Bayesian analysis of the Weibull process with unknown scale
    parameter and its application to acceptance sampling. IEEE Transactions on Reliability
    R-17 (2), 84–90.
    Soland, R. M., 1969. Bayesian analysis of the Weibull process with unknown scale
    and shape parameters. IEEE Transactions on Reliability R-18 (4), 181–184.
    Starbird, S. A., 1994. The effect of acceptance sampling and risk aversion on the
    quality delivered by suppliers. Journal of the Operational Research Society 45 (3),
    309–320.
    Thomas, M. U., 1983. Optimum warranty policies for nonrepairable items. IEEE
    Transactions on Reliability 32 (3), 282–288.
    Thyregod, P., 1975. Bayesian single sampling plans for life-testing with truncation
    of the number of failures. Scandinavian Journal of Statistics 2 (2), 61–70.
    Tsai, T. R., Lu, Y. T., Wu, S. J., 2008. Reliability sampling plans for Weibull distri-bution with limited capacity of test facility. Computers & Industrial Engineering
    55 (3), 721–728.
    Tseng, S. T., Hsu, C. H., 1994. Comparison of Type-I & Type-II accelerated life tests
    for selecting the most reliable product. IEEE Transactions on Reliability 43 (3),
    503–510.
    Wu, S. J., Huang, S. R., 2010. Optimal warranty length for a Rayleigh distributed
    product with progressive censoring. IEEE Transactions on Reliability 59 (4), 661–
    666.
    Zhang, Y., Meeker, W. Q., 2005. Bayesian life test planning for the Weibull distribution
    with given shape parameter. Metrika 61 (3), 237–249.
    Zheng, Q. P., Pardalos, P. M., 2010. Stochastic and risk management models and
    solution algorithm for natural gas transmission network expansion and lng terminal
    location planning. Journal of Optimization Theory and Applications 147 (2),
    337–357.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE