簡易檢索 / 詳目顯示

研究生: 陳道隆
Chen, Dao-Long
論文名稱: 量子系統之混合表象與高應變率對金奈米線力學行為之影響
Mixed picture for quantum system and the effects of high strain-rate on mechanical behavior of gold nanowires
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 169
中文關鍵詞: 混何表象金奈米線半週期邊界條件高應變率全量子分子動力學
外文關鍵詞: Gold nanowire, High strain-rate, All-quantum molecular dynamics, Mixed picture, Semi-periodic boundary condition
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以混合表象來表示電子-原子核之全量子系統,對於電子部份,可得到與Schrdinger表象類似的形式,以習慣的波函數來描述電子運動,對於原子核部份,則可得到與Heisenberg表象類似的形式,以類比於古典力學的運動方程式來描述原子核運動;混合表象可用於量子統計力學,且方便用於量子-古典混合系統的推導。本文並證明正則系綜下等溫處理的分子動力學應配合正則系綜時依密度泛函理論,而非文獻中配合微正則系綜之時依密度泛函理論。最後針對不同溫度、不同晶軸方向下金奈米線於高應變率拉伸下的力學行為做廣泛地分析,探討其應力分佈、截面積變化、徑向分布函數的演化與分布、應力、能量與應變關係圖與最大應力、Young係數等性質,並以共同鄰近粒子分析法分析其局部結構變化,發現其應力與能量的轉折與局部結構變化有密切關係,最大應力與Young係數與應變率也有關聯存在。根據這些平滑變化的局部結構與機械性質,我們進而預測高應變率下電導量子化情形不會出現。

     The mixed picture is introduced to represent electronic-nucli quantum system. The Schrdinger-like equations can be obtained for electrons, and the wave function can be habitually used for the motion of electrons. On the other hand, the Heisenberg-like equations of motion can be obtained for nuclei and are analogous to classical mechanics. The mixed picture can be applied to the quantum statistical mechanics and can be conveniently used to derive the equations of motion of the mixed quantum-classical system. The proof is also derived that under canonical ensemble, the isothermal molecular dynamics should be combined with the canonical time-dependent density-functional theory instead of microcanonical one which was used by a reference. The effects of high strain-rate on mechanical behavior of gold nanowire are studied under different temperatures and different crystalline orientations. The properties are focused such as the distributions of stresses, the changes of cross sections, the evolutions and distributions of radial distribution functions, stress-strain and energy-strain relations, maximum strengths, and Young’s moduli. The common neighbor analysis is used to study the changes of local structures and the corresponding relations to stresses and energies. The maximum strengths and Young's moduli are also related to strain-rates. According to the smooth changes of local structures and mechanical properties, we predict that the quantized conductivities, which occur under lower strain-rate, will not be observed under high strain-rate.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 ix 符號說明 xiii 英文字母 xiii 希臘字母 xiv 符號上標 xiv 符號下標 xiv 第一章 前言 1 1-1 奈米元件的發展與應用 1 1-2 奈米線的製程技術 5 1-3 金屬奈米線的電學性質 9 1-4 本文研究方向與架構 10 第二章 分子動力學基本理論 13 2-1 混合表象 13 2-2 量子-古典混合系統 21 2-3 古典分子動力學(ClMD) 27 2-3-1 平衡態分子動力學(EMD) 28 2-3-2 非平衡態分子動力學(NEMD) 38 2-4 Hartree-Fock分子動力學(HFMD) 43 2-5 Car-Parrinello分子動力學(CPMD) 47 2-6 密度泛函分子動力學、時依密度泛函分子動力學與電流-密度泛函分子動力學、時依電流-密度泛函分子動力學(DFMD/TDDFMD/CDFMD/TDCDFMD) 48 2-7 NH調溫法結合等溫TDDFT 61 2-8 路徑積分分子動力學、徑心分子動力學與全始算徑心分子動力學(PIMD/CMD/AICMD) 66 第三章 邊界條件與金奈米線之研究 75 3-1 邊界條件 75 3-1-1 週期邊界條件 75 3-1-2 固定邊界條件 78 3-1-3 半週期邊界條件 82 3-2 高應變率對金奈米線力學行為之影響 104 3-2-1 研究方法 104 3-2-2 結果與討論 107 第四章 結論與未來展望 121 4-1 結論 121 4-2 未來展望 123 附錄A 古典力學摘要 127 A-1 Newtonian動力學 127 A-2 Lagrangian動力學 128 A-3 Hamiltonian動力學 129 附錄B 量子力學摘要 131 B-1 Dirac符號 131 B-2 Schrdinger波動力學 135 B-3 Heisenberg矩陣力學 136 B-4 Feynman路徑積分 137 附錄C 統計力學摘要 141 C-1 古典統計力學 142 C-2 量子統計力學 149 附錄D 塊體Young係數的極值 153 D-1 理論推導 153 D-2 實際圖例 155 參考文獻 157 自述 169

    [1] National Nanotechnology Initiative: Leading to the next Industrial revolution, Committee on technology national science and technology council, Feb. 2000, Washingon, D. C., USA.
    [2] WTEC panel report on Nanostructure Science and Technology, International Technology Research Institute, Dec. 1998, Maryland, USA.
    [3] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, “Growth and optical properties of nanometer-scale GaAs and InAs whiskers,” J. Appl. Phys. 77, 447 (1995).
    [4] G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, “Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina,” J. Mater. Res. 15, 347 (2000).
    [5] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 76, 2011 (2000).
    [6] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435 (1999).
    [7] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75, 3129 (1999).
    [8] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing,” Science 289, 94 (2000).
    [9] C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, “Growth and fabrication with single-walled carbon nanotube probe microscopy tips,” Appl. Phys. Lett. 76, 3136 (2000).
    [10] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors,” Science 287, 622 (2000).
    [11] J. Kong, M. G. Chapline, and H. Dai, “Functionalized carbon nanotubes for molecular hydrogen sensors,” Adv. Mater. 13, 1384 (2001).
    [12] X. F. Duan, Y. Huang, Yi Cui, J. F. Wang, C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66 (2001).
    [13] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897 (2001).
    [14] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289 (2001).
    [15] J. Chen and R. Knenkamp, “Vertical nanowire transistor in flexible polymer foil,” Appl. Phys. Lett. 82, 4782 (2003).
    [16] R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, “High-speed integrated nanowire circuits,” Nature 434, 1085 (2005).
    [17] A. M. Alper, Phase Diagram in Advanced Ceramics (Academic, 1995).
    [18] X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal gan nanowires,” J. Am. Chem. Soc. 122, 188 (2000).
    [19] M. S. Gudiksen and C. M. Lieber, “Diameter-selective synthesis of semiconductor nanowires,” J. Am. Chem. Soc. 122, 8801 (2000).
    [20] C. C. Chen, C. Y. Chao, and Z. H. Lang, “Simple solution-phase synthesis of soluble cds and cdse nanorods,” Chem. Mater. 12, 1516 (2000).
    [21] L. Manna, E. C. Scher, and A. P. Alivisatos, “Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped cdse nanocrystals,” J. Am. Chem. Soc. 122, 12700 (2000).
    [22] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59 (2000).
    [23] S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires from Oxides,” J. Mater. Res. 14, 4503 (1999).
    [24] L. C. Chen, S. W. Chang, C. S. Chang, C. Y. Wen, J. J. Wu, Y. F. Chen, Y. S. Huang, and K. H. Chen, “Catalyst-free and controllable growth of SiCxNy nanorods,” J. Phys. Chem. Solids 62, 1567 (2001).
    [25] M. He, I. Minus, P. Zhou, S. N. Mohammed, J. B. Halpern, R. Jacobs, W. L. Sarney, L. Salamanca-Riba, and R. D. Vispute, “Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3,” Appl. Phys. Lett. 77, 3731 (2000).
    [26] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science 287, 1471 (2000).
    [27] Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang, and Y. T. Qian, “Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod,” Inorg. Chem. 38, 1382 (1999).
    [28] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300, 112 (2003).
    [29] A. Mikkelsen, N. Skld, L. Ouattara, M. Borgstrm, J. N. Andersen, L. Samuelson, W. Seifert, and E. Lundgren, “Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy,” Nature Mater. 3, 519 (2004).
    [30] M. Brandbyge, J. Schitz, M. R. Srensen, P. Stoltze, K. W. Jacobsen, J. K. Nrskov, L. Olesen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, “Quantized conductance in atom-sized wires between two metals,” Phys. Rev. B 52, 8499 (1995).
    [31] M. Brandbyge, K. W. Jacobsen, and J. K. Nrskov, “Scattering and conductance quantization in three-dimensional metal nanocontacts,” Phys. Rev. B 55, 2637 (1997).
    [32] L. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, J. Schitz, P. Stoltze, K. W. Jacobsen, and J. K. Nrskov, “Quantized conductance in an atom-sized point contact,” Phys. Rev. Lett. 72, 2251 (1994); 74, 2146 (1995); 74, 2147 (1995).
    [33] J. M. Krans, C. J. Muller, I. K. Yanson, T. C. M. Govaert, R. Hesper, and J. M. Van Ruitenbeek, “One-atom point contacts,” Phys. Rev. B 48, 14721 (1994).
    [34] J. L. Costa-Krmer, N. Garca, P. Garca-Mochales, and P. A. Serena, “Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top,” Surf. Sci. 342, L1144 (1995); 349, L138 (1996).
    [35] J. L. Costa-Krmer, N. Garca, P. Garca-Mochales, P. A. Serena, M. I. Marqus, and A. Correia, “Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes,” Phys. Rev. B 55, 5416 (1997).
    [36] J. L. Costa-Krmer, “Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires,” Phys. Rev. B 55, R4875 (1997).
    [37] U. Landman, W. D. Luedtke, B. E. Salisbury, and R. L. Whetten, “Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions,” Phys. Rev. Lett. 77, 1362 (1996).
    [38] K. Hansen, E. Lgsgaard, I. Stensgaard, and F. Besenbacher, “Quantized conductance in relays,” Phys. Rev. B 56, 2208 (1997).
    [39] A. Stalder and U. Drig, “Study of yielding mechanics in nanometer-sized Au contacts,” Appl. Phys. Lett. 68, 637 (1996).
    [40] A. Stalder and U. Drig, “Study of plastic flow in ultrasmall Au contacts,” J. Vac. Sci. Technol. B 14, 1259 (1996).
    [41] T. N. Todorov and A. P. Sutton, “Force and conductance jumps in atomic-scale metallic contacts,” Phys. Rev. B 54, 14234 (1996).
    [42] C. A. Stafford, D. Baeriswyl, and J. Brki, “Jellium model of metallic nanocohesion,” Phys. Rev. Lett. 79, 2863 (1997).
    [43] S. Blom, H. Olin, J. L. Costa-Krmer, N. Garca, M. Jonson, P. A. Serena, and R. I. Shekhter, “Free-electron model for mesoscopic force fluctuations in nanowires,” Phys. Rev. B 57, 8830 (1998).
    [44] J. W. Kang and H. J. Hwang, “Molecular dynamics simulation study of the mechanical properties of rectangular cu nanowires,” J. Korean Phys. Soc. 38, 695 (2001).
    [45] H. Ikeda, Y. Qi, T. agin, K. Samwer, W. L. Johnson, and W. A. Goddard III, “Strain rate induced amorphization in metallic nanowires,” Phys. Rev. Lett. 82, 2900 (1999).
    [46] P. S. Brancio and J. P. Rino, “Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study,” Phys. Rev. B 62, 16950 (2000).
    [47] A. Messiah, Quantum Mechanics (North-Holland, New York, 1961).
    [48] E. Schrdinger, “Quantisierung als eigenwertproblem,” Ann. Der Physik 79, 361 (1926).
    [49] W. Heisenberg, “ber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,” Zeit. Physik 33, 879 (1925).
    [50] P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (London: Oxford University Press, 1958).
    [51] J. J. Sakurai, Modern Quantum Mechanics, revised edition (Addison-Wesley, 1994).
    [52] J. H. McGuire, A. L. Godunov, S. G. Tolmanov, Kh. Kh. Shakov, R. Drner, H. Schmidt-Bcking, and R. M. Dreizler, “Time correlation in two-electron transitions produced in fast collisions of atoms with matter and light,” Phys. Rev. A 63, 052706 (2001).
    [53] R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics,” J. Math. Phys. 8, 962 (1967).
    [54] M. Suzuki, “Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics,” J. Math. Phys. 26, 601 (1985).
    [55] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).
    [56] R. Kapral and G. Ciccotti, “Mixed quantum-classical dynamics,” J. Chem. Phys. 110, 8919 (1999).
    [57] S. Nielsen, R. Kapral and G. Ciccotti, “Statistical mechanics of quantum-classical systems,” J. Chem. Phys. 115, 5805 (2001).
    [58] D. J. Diestler, “Analysis of infrared absorption line shapes in condensed media: application of a classical limit of Heisenberg's equations of motion,” J. Chem. Phys. 78, 2240 (1983).
    [59] D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Theory and Implementation (John von Neumann Institute for Computing, 2000).
    [60] U. Saalmann and R. Schmidt, “Non-adiabatic quantum molecular dynamics: basic formalism and case study,” Z. Phys. D 38, 153 (1996).
    [61] K. W. Jacobsen, J. K. Nrskov and M. J. Puska, “Interatomic interactions in the effective-medium theory,” Phys. Rev. B 35, 7423 (1987).
    [62] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443 (1984).
    [63] M. W. Finnis and J. E. Sinclair, “A simple empirical n-body potential for transition metals,” Philos. Mag. A 50, 45 (1984).
    [64] F. Ercolessi, M. Parrinello, and E. Tosatti, “Simulation of gold in the glue model,” Philos. Mag. A 58, 213 (1988).
    [65] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, 1992).
    [66] D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Harcourt Brace Jovanovich, London, 1990).
    [67] S. Nos and M. L. Klein, “Constant pressure molecular dynamics for molecular systems,” Mol. Phys. 50, 1055 (1983).
    [68] S. Nos, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511 (1984).
    [69] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys, Rev. A 31, 1695 (1985).
    [70] Y. Liu and M. E. Tuckerman, “Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble,” J. Chem. Phys. 112, 1685 (2000).
    [71] G. J. Martyna, M. E. Tuckerman, and M. L. Klein, “Nose-Hoover chains: the canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635 (1992).
    [72] W. G. Hoover and B. L. Holian, “Kinetic moments method for the canonical ensemble distribution,” Phys. Lett. A 211, 253 (1996).
    [73] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” J. Chem. Phys. 72, 2384 (1980).
    [74] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: a new molecular dynamics method,” J. Appl. Phys. 52, 7182 (1981).
    [75] C. L. Cleveland, “New equations of motion for molecular dynamics systems that change shape,” J. Chem. Phys. 89, 4987 (1988).
    [76] R. M. Wentzcovitch, “Invariant molecular-dynamics approach to structural phase transitions,” Phys. Rev. B 44, 2358 (1991).
    [77] J. V. Lill and J. Q. Broughton, “Nonlinear molecular dynamics and Monte Carlo algorithms,” Phys. Rev. B 46, 12068 (1992).
    [78] I. Souza and J. L. Martins, “Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics,” Phys. Rev. B 55, 8733 (1997).
    [79] W. G. Hoover, “Constant-pressure equations of motion,” Phys. Rev. A 34, 2499 (1986).
    [80] G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular dynamics algorithms,” J. Chem. Phys. 101, 4177 (1994).
    [81] M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J. Martyna, “Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems,” J. Chem. Phys. 115, 1678 (2001).
    [82] M. E. Tuckerman and G. J. Martyna, “Understanding modern molecular dynamics: techniques and applications,” J. Phys. Chem. B 104, 159 (2000).
    [83] J. Ji, T. ağin, and B. M. Pettitt, “Dynamic simulations of water at constant chemical potential,” J. Chem. Phys. 96, 1333 (1992).
    [84] C. Lo and B. Palmer, “Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble,” J. Chem. Phys. 102, 925 (1995).
    [85] R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithm and Object-Orientation (Elsevier, New York, 1999).
    [86] G. C. Lynch and B. M. Pettitt, “Grand canonical ensemble molecular dynamics simulations: Reformulation of extended system dynamics approaches,” J. Chem. Phys. 107, 8594 (1997).
    [87] R. M. Shroll and D. E. Smith, “Molecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling,” J. Chem. Phys. 110, 8295 (1999); M. Mezei, J. Chem. Phys. 112, 1059 (2000).
    [88] 吳大猷,古典動力學 (聯經出版社,台北市,1977)。
    [89] M. E. Tuckerman, C. J. Mundy, S. Balasubramanian, and M. L. Klein, “Modified nonequilibrium molecular dynamics for fluid flows with energy conservation,” J. Chem. Phys. 106, 5615 (1997); D. J. Evans et al., J. Chem. Phys. 108, 4351 (1998); M. E. Tuckerman et al., J. Chem. Phys. 108, 4353 (1998).
    [90] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University, 1995).
    [91] 吳大猷,量子力學 (甲部) (聯經出版社,台北市,1979)。
    [92] T. N. Todorov, “Time-dependent tight binding,” J. Phys.: Condens. Matter 13, 10125 (2001).
    [93] N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).
    [94] E. Runge and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Phys. Rev. Lett. 52, 997 (1984).
    [95] T. C. Li and Y. M. Li, “Kohn-Sham equation for time-dependent ensembles,” Phys. Rev. A 31, 3970 (1985).
    [96] G. Vignale and M. Rasolt, “Density-functional theory in strong magnetic fields,” Phys. Rev. Lett. 59, 2360 (1987); 62, 115 (1989).
    [97] G. Vignale and M. Rasolt, “Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields,” Phys. Rev. B 37, 10685 (1988).
    [98] S. M. Colwell, and N. C. Handy, and A. M. Lee, “Determination of frequency-dependent polarizabilities using current density-functional theory,” Phys. Rev. A 53, 1316 (1996).
    [99] S. K. Ghosh and A. K. Dhara, “Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields,” Phys. Rev. A 38, 1149 (1988).
    [100] M. P. Desjarlais, J. D. Kress, and L. A. Collins, “Electrical conductivity for warm, dense aluminum plasmas and liquids,” Phys. Rev. E 66, 025401 (2002).
    [101] J. Theilhaber, “Ab initio simulations of sodium using time-dependent density-functional theory,” Phys. Rev. B 46, 12990 (1992).
    [102] M. E. Tuckerman, C. J. Mundy, and G. J. Martyna, “On the classical statistical mechanics of non-Hamiltonian systems,” Europhys. Lett. 45, 149 (1999).
    [103] L. E. Ballentine and M. Kolř, “Recursion, non-orthogonal basis vectors, and the computation of electronic properties,” J. Phys. C: Solid State Phys. 19, 981 (1986).
    [104] M. E. Tuckerman, Path Integral via Molecular Dynamics (NIC Series, Vol. 10, pp. 269-298, 2002).
    [105] M. E. Tuckerman, Ab Initio Molecular Dynamics and Ab Initio Path Integrals (NIC Series, Vol. 10, pp. 299-324, 2002).
    [106] G. A. Voth, “Calculation of equilibrium averages with Feynman-Hibbs effective classical potentials and similar variational approximations,” Phys. Rev. A 44, 5302 (1991).
    [107] R. Ramrez and T. Lpez-Ciudad, Dynamic Properties via Fixed Centroid Path Integrals (NIC Series, Vol. 10, pp. 325-360, 2002).
    [108] M. Shiga, M. Tachikawa, and S. Miura, “A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics,” J. Chem. Phys. 115, 9149 (2001).
    [109] G. J. Martina, A. Hughes, and M. E. Tuckerman, “Molecular dynamics algorithms for path integrals at constant pressure,” J. Chem. Phys. 110, 3275 (1999).
    [110] R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972).
    [111] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (New York, McGraw-Hill, 1965).
    [112] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties,” J. Chem. Phys. 100, 5093 (1994).
    [113] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties,” J. Chem. Phys. 100, 5106 (1994).
    [114] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics,” J. Chem. Phys. 101, 6157 (1994).
    [115] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics,” J. Chem. Phys. 101, 6168 (1994).
    [116] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids,” J. Chem. Phys. 101, 6184 (1994).
    [117] D. Marx, M. E. Tuckerman, and G. J. Martina, “Quantum dynamics via adiabatic ab initio centroid molecular dynamics,” Comp. Phys. Comm. 118, 166 (1999).
    [118] G. J. Martina, “Adiabatic path integral molecular dynamics methods. I. Theory,” J. Chem. Phys. 104, 2018 (1996); G. J. Martina, “Adiabatic path integral molecular dynamics methods. II. Algorithms,” J. Chem. Phys. 104, 2028 (1996).
    [119] J. Cao and B. J. Berne, “A Born-Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids,” J. Chem. Phys. 99, 2902 (1993).
    [120] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University, 1991).
    [121] S. P. Ju, C. I Weng, J. G. Chang, and C. C. Hwang, “Molecular dynamics simulation of sputter trench-filling morphology in damascene process,” J. Appl. Phys. 89, 7825 (2001).
    [122] F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262 (1985).
    [123] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B 39, 5566 (1989).
    [124] L. Verlet, “Computer "experiments" on classical fluids. I. Thermodynamical properties of lennard-jones molecules,” Phys. Rev. 159, 98 (1967).
    [125] R. A. Johnson, “Analytic nearest-neighbor model for fcc metals,” Phys. Rev. B 37, 3924 (1988).
    [126] R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554 (1989).
    [127] R. Windiks and B. Delley, “Massive thermostatting in isothermal density functional molecular dynamics simulations,” J. Chem. Phys. 119, 2481 (2003).
    [128] J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, “Universal features of the equation of state of metals,” Phys. Rev. B 29, 2963 (1984).
    [129] S. Balasubramanian, C. J. Mundy, and M. L. Klein, “Shear viscosity of polar fluids: Molecular dynamics calculations of water,” J. Chem. Phys. 105, 11190 (1996).
    [130] Z. S. Basinski, M. S. Duesbery, and R. Taylor, “Influence of shear stress on screw dislocations in a model sodium lattice,” Can. J. Phys. 49, 2160 (1971).
    [131] J. Diao, K. Gall, M. L. Dunn, “Atomistic simulation of the structure and elastic properties of gold nanowires,” J. Mech. Phys Solids 52, 1935 (2004).
    [132] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
    [133] R. Devanathan, N. Q. Lam, P. R. Okamoto, and M. Meshii, “Molecular-dynamics simulation of electron-irradiation-induced amorphization of NiZr2,” Phys. Rev. B 48, 42 (1993).
    [134] H. W. Sheng and E. Ma, “Intermixing of a system with positive heat of mixing at high strain rates,” Phys. Rev. B 63, 224205 (2001).
    [135] Q. Zhang, W. S. Lai, and B. X. Liu, “Strain-induced structural phase transition of a Ni lattice through dissolving Ta solute atoms,” Phys. Rev. B 63, 212102 (2001).
    [136] M. R. Srensen, M. Brandbyge, and K. W. Jacobsen, “Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms,” Phys. Rev. B 57, 3283 (1998).
    [137] N. Agra, G. Rubio, and S. Vieira, “Plastic deformation of nanometer-scale gold connective necks,” Phys. Rev. Lett. 74, 3995 (1995).
    [138] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergramon, New York, 1986).
    [139] A. Pecchia and A. D. Carlo, “Atomistic theory of transport in organic and inorganic nanostructures,” Rep. Prog. Phys. 67, 1497 (2004).
    [140] 金尚年,古典力學 (亞東書局,台北市,1989)。
    [141] 吳大猷,熱力學、氣體運動論及統計力學 (聯經出版社,台北市,1978)。

    下載圖示 校內:2007-01-24公開
    校外:2007-01-24公開
    QR CODE