| 研究生: |
林凱翔 Lin, Kai-Hsiang |
|---|---|
| 論文名稱: |
動態卷積應用於盲高斯糢糊超解析度 Super-Resolution Networks with Dynamic Convolution on Blind Gaussian Deblurring |
| 指導教授: |
張瑞紘
Chang, Jui-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 深度學習 、超解析度 、去模糊 、高斯模糊 、多種降級 |
| 外文關鍵詞: | deep learning, super-resolution, deblurring, Gaussian blur, multiple degradation |
| 相關次數: | 點閱:109 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來基於深度學習的方法超在超解析度領域廣泛發展,並在基準上取得創新的性能。然而許多演算法在實際應用中性能下降,原因在於這些方法在訓練模型時大多採取固定的降級函數(例如雙三次內插)來產生訓練資料。實際應用的情況十分複雜,真實低解析度圖片可能遭受模糊和雜訊影響。因此本文提出了一個動態卷積超解析度網路(SRDC),以適應遭受不同降級影響的低解析度圖片。 SRDC結合降級估計、去糢糊和超解析度,降級函數轉換成糢糊核特徵並引導動態卷積層提取關鍵特徵。經實驗證明SRDC能夠有效應對不同的高斯模糊,並且在多種降級數據集中具有令人滿意且合理的性能。
In recent years, deep learning-based methods have been widely developed in the field of super-resolution and have achieved innovative performance on benchmarks. However, the performance of many algorithms decreases in real applications because most of these methods use fixed degradation functions (such as bicubic interpolation) to generate training data when training models. The real application situation is very complicated, and real low-resolution images may suffer from blur and noise. Therefore, this study proposes Super-Resolution network with Dynamic Convolution (SRDC) to adapt to low-resolution images subject to different degradation effects. Different from the previous methods, SRDC combines degradation estimation, deblurring and super-resolution. The model converts the degradation function into a blur kernel feature and guides the dynamic convolutional layer to extract key features. Experiments have proved that SRDC can effectively deal with different Gaussian blurs and has satisfactory and reasonable performance in multiple degradation datasets.
[1] Agustsson, E., & Timofte, R. "Ntire 2017 challenge on single image super-resolution: Dataset and study." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126-135, 2017.
[2] Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J., Harvill, A., ... & Rousselle, F. "Kernel-predicting convolutional networks for denoising Monte Carlo renderings." ACM Transactions on Graphics (TOG) 36.4, 2017.
[3] Bell-Kligler, S., Shocher, A., & Irani, M. "Blind super-resolution kernel estimation using an internal-gan." Advances in Neural Information Processing Systems, pp. 284-293, 2019.
[4] Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhou, Z., & Li, D. "Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network." International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 91-99, 2018.
[5] Cheng, Z., Zhu, X., & Gong, S. "Low-resolution face recognition." Asian Conference on Computer Vision, pp. 605-621, 2018.
[6] Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., & Liu, Z. "Dynamic convolution: Attention over convolution kernels." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030-11039, 2020.
[7] Demirel, H., & Anbarjafari, G. "Discrete wavelet transform-based satellite image resolution enhancement." IEEE transactions on geoscience and remote sensing, pp. 1997-2004, 2011.
[8] Dong, W., Zhang, L., Shi, G., & Li, X. "Nonlocally centralized sparse representation for image restoration." IEEE transactions on Image Processing, pp. 1620-1630, 2012.
[9] Dong, C., Loy, C. C., He, K., & Tang, X. "Image super-resolution using deep convolutional networks." IEEE transactions on pattern analysis and machine intelligence, pp. 295-307, 2015.
[10] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer vision, pp. 764-773, 2017.
[11] Efrat, N., Glasner, D., Apartsin, A., Nadler, B., & Levin, A. "Accurate blur models vs. image priors in single image super-resolution." Proceedings of the IEEE International Conference on Computer Vision, pp. 2832-2839, 2013.
[12] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. "Generative adversarial nets." Advances in neural information processing systems, pp. 2672-2680, 2014.
[13] Gu, J., Lu, H., Zuo, W., & Dong, C. "Blind super-resolution with iterative kernel correction." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1604-1613, 2019.
[14] He, K., Zhang, X., Ren, S., & Sun, J. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
[15] Hu, J., Shen, L., & Sun, G. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141, 2018.
[16] He, J., Dong, C., & Qiao, Y. "Modulating image restoration with continual levels via adaptive feature modification layers." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11056-11064, 2019.
[17] Ioffe, S., & Szegedy, C. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." ArXiv Preprint SrXiv:1502.03167, 2015.
[18] Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. "Dynamic filter networks." Advances in neural information processing systems, pp. 667-675, 2016.
[19] Johnson, J., Alahi, A., & Fei-Fei, L. "Perceptual losses for real-time style transfer and super-resolution." European conference on computer vision, pp. 694-711, 2016.
[20] Kim, J., Kwon Lee, J., & Mu Lee, K. "Accurate image super-resolution using very deep convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1646-1654, 2016.
[21] Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. "Deblurgan: Blind motion deblurring using conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8183-8192, 2018.
[22] Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. "Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better." Proceedings of the IEEE International Conference on Computer Vision, pp. 8878-8887, 2019.
[23] Köhler, T., Bätz, M., Naderi, F., Kaup, A., Maier, A., & Riess, C. "Toward bridging the simulated-to-real gap: Benchmarking super-resolution on real data." IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
[24] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., ... & Shi, W. "Photo-realistic single image super-resolution using a generative adversarial network." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681-4690, 2017.
[25] Lim, B., Son, S., Kim, H., Nah, S., & Mu Lee, K. "Enhanced deep residual networks for single image super-resolution." Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 136-144, 2017.
[26] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125, 2017.
[27] Lai, W. S., Huang, J. B., Ahuja, N., & Yang, M. H. "Fast and accurate image super-resolution with deep laplacian pyramid networks." IEEE transactions on pattern analysis and machine intelligence, pp. 2599-2613, 2018.
[28] Li, J., Fang, F., Mei, K., & Zhang, G. "Multi-scale residual network for image super-resolution." Proceedings of the European Conference on Computer Vision (ECCV), pp. 517-532, 2018.
[29] Michaeli, T., & Irani, M. "Nonparametric blind super-resolution." Proceedings of the IEEE International Conference on Computer Vision, pp. 945-952, 2013.
[30] Nah, S., Hyun Kim, T., & Mu Lee, K. "Deep multi-scale convolutional neural network for dynamic scene deblurring." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883-3891, 2017.
[31] Niklaus, S., Mai, L., & Liu, F. "Video frame interpolation via adaptive convolution." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670-679, 2017.
[32] Qiu, Y., Wang, R., Tao, D., & Cheng, J. "Embedded block residual network: A recursive restoration model for single-image super-resolution." Proceedings of the IEEE International Conference on Computer Vision, pp. 4180-4189, 2019.
[33] Riegler, G., Schulter, S., Ruther, M., & Bischof, H. "Conditioned regression models for non-blind single image super-resolution." Proceedings of the IEEE International Conference on Computer Vision, pp. 522-530, 2015.
[34] Romano, Y., Isidoro, J., & Milanfar, P. "RAISR: rapid and accurate image super resolution." IEEE Transactions on Computational Imaging, pp. 110-125, 2016.
[35] Sajjadi, M. S., Scholkopf, B., & Hirsch, M. "Enhancenet: Single image super-resolution through automated texture synthesis." Proceedings of the IEEE International Conference on Computer Vision, pp. 4491-4500, 2017.
[36] Shocher, A., Cohen, N., & Irani, M. "“zero-shot” super-resolution using deep internal learning." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3318-3126, 2018.
[37] Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., & Kautz, J. "Pixel-adaptive convolutional neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11166-11175, 2019.
[38] Timofte, R., De Smet, V., & Van Gool, L. "Anchored neighborhood regression for fast example-based super-resolution." Proceedings of the IEEE international conference on computer vision, pp. 1920-1927, 2013.
[39] Timofte, R., De Smet, V., & Van Gool, L. "A+: Adjusted anchored neighborhood regression for fast super-resolution." Asian conference on computer vision, pp. 111-126, 2014.
[40] Wang, X., Girshick, R., Gupta, A., & He, K. "Non-local neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794-7803, 2018.
[41] Wang, X., Chan, K. C., Yu, K., Dong, C., & Change Loy, C. "Edvr: Video restoration with enhanced deformable convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 16-20, 2019.
[42] Xu, X., Pan, J., Zhang, Y. J., & Yang, M. H. "Motion blur kernel estimation via deep learning." IEEE Transactions on Image Processing, pp. 194-205, 2017.
[43] Yang, C. Y., Ma, C., & Yang, M. H. "Single-image super-resolution: A benchmark." European Conference on Computer Vision, pp. 372-386, 2014.
[44] Yu, H., Liu, D., Shi, H., Yu, H., Wang, Z., Wang, X., ... & Huang, T. S. "Computed tomography super-resolution using convolutional neural networks." 2017 IEEE International Conference on Image Processing (ICIP), pp. 3944-3948. 2017.
[45] Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., & Lin, L. "Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 701-710, 2018.
[46] Zhang, K., Zuo, W., Gu, S., & Zhang, L. "Learning deep CNN denoiser prior for image restoration." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3929-3938, 2017.
[47] Zhang, K., Zuo, W., & Zhang, L. "Learning a single convolutional super-resolution network for multiple degradations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262-3271, 2018.
[48] Zhang, X., Dong, H., Hu, Z., Lai, W. S., Wang, F., & Yang, M. H. "Gated fusion network for joint image deblurring and super-resolution." ArXiv Preprint ArXiv:1807.10806, 2018.