| 研究生: |
黃致豪 Huang, Chih-Hao |
|---|---|
| 論文名稱: |
穏態馬赫反射三震波理論之流場性質分析 A Three-Shock Theoretical Analysis of Steady Mach Reflections |
| 指導教授: |
劉中堅
Liu, Jong-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 馬赫反射 、三震波 |
| 外文關鍵詞: | three shock, Mach reflection |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先應用穩態馬赫反射流場運動方程式及斜震波關係式,推導出理想氣體穩態馬赫反射流場之反射震波下游之音速條件與反射震波之強弱分界條件之曲線解公式,並應用該曲線解公式來推導反射震波俱音速性質於Mach angle條件及反射震波俱強弱分界性質於Mach angle條件之 公式。隨後本文由石(2004)論文中加入前後分界、機械平衡、M2=1及強弱分界條件,然後有系統地探討三原子分子理想氣體 (r=1.2857 ) 穩態馬赫反射參震波理論多重解之交點及其對應之壓力-轉折角震波極圖解,並建構出此三原子分子理想氣體穩態馬赫反射流場三震波十階多項式理論解於(Mo,q1)平面上之解域圖,其中M0為入射震波上游流場馬赫數,M1為入射震波下游流場馬赫數,M2為入射震波下游流場馬赫數,q1為入射震波下游流場轉折角。同時証明在(Mo,q1)平面上之解域圖上,M2=1曲線、WuestI曲線、前向音速曲線、前向強弱曲線、前後分界曲線並無相交。最後吾人針對WuestII曲線、後向音速曲線、後向強弱曲線、機械平衡曲線,推導它們之間的交點解公式 ,並將計算的結果標示於 平面上之解域圖上。
ABSTRACT
In this thesis, we apply the equations of motion of steady Mach reflections and the oblique shock theory to derive polynomial expressions of the forms of f(r,Mo,P1) of downstream sonic and strong/weak separating conditions of reflected shocks of perfect-gas steady Mach reflections. We then obtain polynomial expressions of the forms of f(r,M0) for the limiting Mach angle condition of the above two expressions. We then add boundaries delineated forward/backward facing reflected shock, Mechanical equilibrium, M2=1 and reflected shock strong/weak separating conditions on the (M0,q1) map of shih(2004). This is followed by systematically investigating multiply possible three shock theoretical solutions of steady Mach reflections in perfect triatomic gases. Pressure-deflection shock polar solutions are used to help illustrate different solution behaviors of these theoretical three-shock solutions. M0 is flow Mach no. upstream of incident shock, M1 is flow Mach no. downstream of incident shock, M2 is flow Mach no. downstream of reflected shock,q1 is flow deflection downstream of incident shock. We show that solution curves of M1=1 , WuestI, reflected shock forward-facing sonic, reflected shock forward-strong/weak separating, and reflected shock forward/backward facing conditions are not intersected. On the other formed, polynomial expressions of intersected point between solution curves of WuestII, reflected shock backward-facing sonic, reflected shock backward-strong/weak separating, Mechanical equilibrium are derived and computed results are marked on the (M0,q1) theoretical solution map of perfect triatomic gas steady Mach reflection.
參考文獻
1.Ames Aeronautical Lab. Rep., ”AMES Equations, Tables and Charts for Compressible Flow,” NASA, No. 1135, (1953).
2.Neumann, J. von Refraction, interaction and reflection of shock waves. NAVORD Rep. 203-45. Navy Dept, Bureau of Ordinance, WASHINGTON, DC, 1945.
3.Mach, E., “Uber einige mechanische Wirkungen des electrischen Funkens, ” Akademie der Wissenschaften Wien, Vol. 77, No. II, 819-838, (1878).
4.Wuest, W. Zur Theorie des gegabelten Verdichtungatosse. Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 3, p. 73, 1948.
5.Wecken, F. Grenzlagen gegabelten Verdichtungatosse. Zeitschrift fur Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 29, No. 5, p. 147, 1949.
6.Eggin, H. Uber Verdichtungatosse. Beiabgeloster Stromung. Zentralstelle Wissenschaftliche Berichte(Z.W.B.)1850, Aachen, 1943.
7.Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., 15, 181-197, (1964).
8.Henderson, L. F. and Lozzi, A., “Further Experiments on Transition to Mach Reflextion,” J. Fluid Mech., Vol. 94, 541-560, (1979).
9.Henderson, L. F., “Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew, Vol 67, 1-14, (1987).
10.Ben-Dor, G. ”A reconsideration of the Three-Shock Theory of a Pseudo-Steady Mach Reflection.” J. Fluid Mech. Vol. 181, pp. 467-484, (1987).
11.Ben-Dor, G., ”Shock Wave Reflection Phenomena,” Springer-Verlag, New York, (1991).
12.Ben-Dor, G. and Takayama, K., “The Phenomena of Shock Wave Reflection-A Review of Unsolved Problems and Future Research needs,” Shock Waves, Vol. 2, 211-223, (1992).
13.Bleakney, W. & Taub, A.H. (1949) Rev. Mod. Phys. 21, 584-605.
14.Colella, P. & Henderson, L.F. (1990) J. Fluid Mech. 213, 71- 94.
15.Hunter, j., Brio. M., ”The von Neumann Paradox in Weak Shock Reflection,” J Fluid Mech., Vol. 422, pp. 193-205, (2000).
16.Zakharian AR, Brio M, Hunter JK, Webb GM ”The von Neumann paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205, (2000).
17.Liu, J.J., ”Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332, (1996).
18.Liu, J.J., ”A one-dimensional stream-tube interpretation of Liu’s revised three-shock theory for pseudo-steady Mach reflections,” The 23 rd International symposium on shock Wave, Fort Worth, Texas. USA, (2001).
19.Liu, J.J., Chuang, C.C., Chuang, H.W., ”Multiple Solutions of Steady Mach Reflections in Monatomic Gases,” The 19th Nat’l Conference on Mechanical Engineering, Yun-Lin, No. A5-004, (2002).
20.Liu, J.J., “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections in Diatomic Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 120-127, (2003).
21.Liu, J.J. and Shih, M.C., “Preliminary Regimes of Multiplicity of Perfect-Gases Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 27th Nat’l Conference on Theoretical and Applied Mechanics, 719-727, (2003).
22.Liu, J.J., Shih, M.C., Yang, Y.Q., Tseng K.Y., ”Preliminary Regimes of Multiplicity of Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Triatomic Gases,” The 20th Nat’l Conference on Mechanical Engineering, pp. 427-434, (2003).
23.Liu, J.J. and Chung, K.M., “An Experimental and Theoretical Study on Properties of Induced Oblique Waves of Weak Supersonically Flying Straight Wedges,” The 27th Nat’l Conference on Theoretical and Applied Mechanics, 835-843, (2003).
24.MATHEMATICA Pro. V5.1., Wolfram Research., 100 Trade Center Drive Champaign, IL 61820 USA., www. Wolfram. Com
25.莊俊忠,「馬赫反射現象之理論探討」,國立成功大學工程科學系碩士論文,台南 (2002)。
26.李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析:SF6」,國立成功大學工程科學系碩士論文,台南 (2003)。
27.石祐菘,「三原子分子理想氣體穩態馬赫反射三震波理論多重解分析」,國立成功大學工程科學系碩士論文,台南 (2004)。