| 研究生: |
陳璟鋒 Chen, Ching-Feng |
|---|---|
| 論文名稱: |
P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究 Preparation of p-type NiO thin film and investigation on its optical, electrical and material characteristics |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 磁控濺鍍 、氧化鎳 |
| 外文關鍵詞: | p-type TCO, nickel oxide |
| 相關次數: | 點閱:66 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
氧化鎳是具有潛力成為p-type 透明導電氧化物(TCO)的材料之一,但由於氧化鎳的光電性質仍不足以實際應用,因此期望能藉由摻雜異質原子(N原子)以及改變其他相關製程參數,而得到更高的光學穿透率與較佳的導電率之氧化鎳薄膜。
本研究以射頻磁控濺鍍系統,使用鎳金屬靶搭配不同氣體流量比例的氣氛進行反應性濺鍍,以及改變濺鍍時的基板溫度與鍍後的退火處理溫度,藉以得到不同性質表現的氧化鎳薄膜。之後以拉塞福背向散射分析(RBS)作成份定量與密度計算,以X光繞射(θ-2θXRD)、低掠角X光繞射(GIAXRD)以及穿透式電子顯微鏡的繞射圖進行薄膜結構與結晶性的分析,使用掃瞄式電子顯微鏡、穿透式電子顯微鏡與原子力顯微鏡觀察表面型態,以X光光電子能譜與傅立葉轉換紅外線光譜分析化學鍵結。而光學性質的表現則以紫外光-可見光光譜儀(UV-Vis)與穿透式的傅立葉轉換紅外線光譜儀量測不同範圍的光學穿透率,另外導電性質的表現則利用四點探針與霍爾量測,藉以得到電阻率以及載子濃度、載子遷移率等資訊。
實驗結果顯示Ni-O薄膜中O/Ni比值隨著濺鍍時通入不同氣體流量比例而變化,所有O/Ni比值皆大於1。所得的Ni-O薄膜均呈現結晶狀態,並由XRD的分析結果,推論氧原子佔據格隙位置是薄膜中的O/Ni比值大於1的主要機制。經過室溫時效或退火處理後,薄膜中的氧原子可能以氧氣形態脫離,使得Ni-O薄膜的光電性質因此改變,隨著室溫時效時間增長或退火溫度增高均會使薄膜的電阻率上升以及光學穿透率增加。O/Ni比值高的Ni-O薄膜,由於載子濃度較高,故導電性質較佳;然而光學穿透率表現卻不佳,經由穿透率量測所計算的能隙也較小。而O/Ni比值低的薄膜性質表現與比值高者正好相反。當濺鍍時通入氮氣氣氛,並無法使氮原子有效地存留於Ni-O薄膜中,亦無法造成摻雜異質原子、增加自由載子之目的,甚至使Ni-O薄膜中的O/Ni比值下降,導致薄膜導電性質變差,然而薄膜結晶性比濺鍍時無通入氮氣氣氛者較佳。
Abstract
Nickel oxide films may be one of the potential candidates for p-type transparent conducting oxide (TCO). Because the optical and electrical properties of the nickel oxide films have not reached the optimal values, it is expected that doping impurities such as N atoms and changing prccess parameters may improve the transparency and conductivity of nickel oxide films.
In this study, nickel oxide films were prepared with various gas flow ratios by RF magnetron reactive sputtering from a Ni target. By changing the substrate heating temperatures during sputtering and the annealing temperatures after depositions, the nickel oxide films would exhibit different properties. Rutherford backscattering spectrometry (RBS) analysis was used to determine the composition and density of nickel oxide films. The structure and crystallinity of nickel oxide films were characterized by X-ray diffraction (θ-2θXRD), glancing incident angle X-ray diffraction (GIAXRD), and transmission electron microscope (TEM) diffraction patterns. The morphology of nickel oxide films were observed with scanning electron microscope (SEM), transmission electron microscope (TEM), and atomic force microscopy (AFM). The chemical bondings of nickel oxide films were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The transmittance of nickel oxide films was measured by UV-Vis spectrophotometer. Four-point probe and Hall measurement were used to measure resistivity of nickel oxide films. Besides, carrier concentrations and mobility were obtained from Hall measurement.
The exprimental results reveal that O/Ni ratios in the nickel oxide films change with gas flow ratios during sputtering, and all O/Ni ratios are greater than 1. It is found that all nickel oxide films exhibit polycrystalline structures. From XRD results, it is suggested that oxygen interstitials are the dominant factor that results in the non-stoichiometry. After aging at room temperature and annealing treatments, oxygen atoms may evaporate from the nickel oxide films in forms of O2 gas and cause variations in the optical and electrical properties. Resistivity and transparency of the nickel oxide films increase with increasing aging time or annealing temperature. The nickel oxide film with high O/Ni ratio possesses better conductivity due to higher carrier concentrations, but transmittance is poor and the energy gap calculated from the transparency is smaller. The nickel oxide film with low O/Ni ratio exhibits opposite properties. It is found that nitrogen atoms would not be retained in the nickel oxide films during sputtering, and the purposes of doping N atoms and adding carrier concentrations are not achieved. Furthermore, it results in lower O/Ni raitos and inferior conductivity of the nickel oxide films. However, those nickel oxide films have better crystallinity.
參考文獻
1. R. G. Gordon, “Criteria for choosing transparent conductors”, MRS Bulletin, 25(8), 52 (2000).
2. H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “Transparent p-type conducting oxide: design and fabrication of p-n heterojunctions”, MRS Bulletin, 25(8), 28 (2000).
3. 楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料, 179期, 134 (2001).
4. B. G. Lewis, D. C. Paine, “Applications and processing of transparent conducting oxides”, MRS Bulletin, 25(8), 22 (2000).
5. H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films, 236, 27 (1993).
6. P. Puspharajah, S. Radhakrishna, and A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, Journal of Materials Science, 32, 3001 (1997).
7. C. F. Windisch, Jr., K. F. Ferris, G. J. Exarhos, “Synthesis and characterization of transparent conducting oxide cobalt-nickel spinel films”, Journal of Vacuum Science & Technology. A, 19, 1647 (2001).
8. H. J. Goldschmidt, D. Sc., F. Inst. P., F. I. M., “Interstitial alloys”, Butterworth & Co., p.222 (1967).
9. D. S. Ginley, C. Bright, “Transparent conducting oxides”, MRS Bulletin, 25(8), 15 (2000).
10. T. J. Coutts, D. L. Young, and X. Li, “Characterization of transparent conducting oxides”, MRS Bulletin, 25(8), 58 (2000).
11. E. Burstein, “Anomalous optical absorption limit in InSb”, Physical Review, 93, 632 (1954).
12. T. S. Moss, “The interpretation of the properties of Indium Antimonide”, Proceedings of the Physical Society. Section B, 67, 775 (1954).
13. T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin, 25(8), 38 (2000).
14. 楊明輝, “透明導電膜材料與成膜技術的新發展”, 工業材料, 189期, 161 (2002).
15. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, “P-type electrical conduction in transparent thin films of CuAlO2”, Nature, 389, 939 (1997).
16. Z. M. Jarzebski, “Oxide semiconductors”, Pergamon Press (1973).
17. D. Adler, J. Feinleib., “Electrical and optical properties of narrow-band materials”, Physical Review B, 2, 3112 (1970).
18. N. Ohshima, M. Nakada, Y. Tsukamoto, “Structural and magnetic properties of Ni-O/Ni-Fe bilayer films”, Japanese Journal of Applied Physics, 35, L1585 (1996).
19. O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, “Ni-defective value and resistivity of sputtered NiO films”, Journal of Magnetism and Magnetic Materials, 226-230,1627 (2001).
20. Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, “Physical ceramics”, John Wiley & Sons, p.24, p.105, p.129, p.131 (1997).
21. B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, 3rd edition, Prentice Hall, p.48 (2001).
22. I. Hotový, D. Búc, “Characterization of NiO thin films deposited by reactive sputtering”, Vacuum, 50, 41 (1998).
23. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, “Binary alloy phase diagrams”, American Society for Metals, p. 1737 (1987).
24. G. P. Sykora, T. O. Mason, “Defect studies above 1 atm oxygen: NiO and CoO”, American Ceramic Society : nonstoichiometric compounds, 23, 45 (1987).
25. O. Kohmoto, H. Nakagawa, Y. Isagawa, A. Chayahara, “Effect of heat treatment on the oxygen content and resistivity in sputtered NiO films”, Journal of Magnetism and Magnetic Materials, 226-230, 1629 (2001).
26. E. Antolini, “Sintering of LixNi1-xO solid solutions at 1200°C”, Journal of Materials Science, 27, 3335 (1992).
27. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, “Preparation of transparent and semiconducting NiO films”, Vacuum, 68, 149 (2003).
28. A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P. Cronin, “Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films”, Thin Solid Films, 221, 239 (1992).
29. S. Yamada, T. Yoshioka, M. Miyashita, K. Urabe, “Electrochromic properties of sputtered nickel-oxide films”, Journal of Applied Physics, 63, 2116 (1988).
30. E. Fujii, A. Tomozawa, S. Fujii, H. Torii, “NaCl-type oxide films prepared by plasma-enhanced metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics, 32, L1448 (1993).
31. G. Boschloo, A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO”, The Journal of Physical Chemistry. B, 105, 3039 (2001).
32. A. J. Varkey, A. F. Fort, “Solution growth technique for deposition of nickel oxide films”, Thin Solid Films, 235, 47 (1993).
33. M. Tanaka, M. Mukai, Y. Fujimori, M. Kondoh, “Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection”, Thin Solid Films, 281-282, 453 (1996).
34. W. Estrada, A. M. Andersson, C. G. Granqvist, “Electrochromic nickel-oxide-based coatings made by reactive DC magnetron sputtering: Preparation and optical properties”, Journal of Applied Physics, 64, 3678 (1988).
35. I. C. Faria, M. Kleinke, A. Gorenstein, “Toward efficient electrochromic NiOx films: A study of microstructure, morphology, and stoichiometry of radio frequency sputtered films”, Journal of the Electrochemical Society, 145, 235 (1998).
36. M. J. Carey, A. E. Berkowitz, “CoO-NiO superlattices: Interlayer interactions and exchange anisotropy with Ni81Fe19”, Journal of Applied Physics, 73, 6892 (1993).
37. I. Hotovy, J. Huran, P. Siciliano, S. Capone, “The influences of preparation parameters on NiO thin film properties for gas-sensing application”, Sensors and Actuators. B, 78, 126 (2001).
38. J. Olivier, B. Servet, M. Vergnolle, M. Mosca, “Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum”, Synthetic Metals, 122, 87 (2001).
39. R. H. Horng, D. S. Wuu, Y. C. Lien, W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Applied Physics Letters, 79, 2925 (2001).
40. A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, “Chemical and thin-film strategies for new transparent conducting oxides”, MRS Bulletin, 25(8), 45 (2000).
41. A. Hagfeldt, M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, 95, 49 (1995).
42. M. Grätzel, “Heterogeneous photochemical electron transfer”, CRC Press, p.91 (1989).
43. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, “Electrical and optical properties of TiO2 anatase thin films”, Journal of Applied Physics, 75, 2042 (1994).
44. R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence”, Journal of Physics D: Applied Physics, 5, 852 (1972).
45. W. F. Wu, B. S. Chiou, S. T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semiconductor Science and Technology, 9, 1242 (1994).
46. L. F. Mattheiss, “Electronic structure of the 3d transition-metal monoxides. I. Energy-band results”, Physical Review B, 5, 290 (1972).
47. W. C. Yeh, M. Matsumura, “Chemical vapor deposition of nickel oxide films from bis-π-cyclopentadienyl-nickel”, Japanese Journal of Applied Physics, 36, 6884 (1997).
48. Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang, “Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering”, Thin Solid Films, 420-421, 54 (2002).
49. Y. M. Lu, W. S. Hwang, J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films”, Surface and Coatings Technology, 155, 231 (2002).
50. C. F. Windisch, Jr., G. J. Exarhos, K. F. Ferris, M. H. Engelhard, “Infrared transparent spinel films with p-type conductivity”, Thin Solid Films, 398-399, 45 (2001).
51. H. Kawazoe, K. Ueda, “Transparent conducting oxides based on the spinel structure”, Journal of the American Ceramic Society, 82, 3330 (1999).
52. D. K. Scheroder, “Semiconductor material and device characterization”, 2nd edition, John Wiley & Sons, p.524 (1998).
53. J. Pelleg, L. Z. Zevin, S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates”, Thin Solid Films, 197, 117 (1991).
54. J. Velevska, M. R. Vaseva, “Electrochromic nickel oxide films studied by Furier transform infrared spectroscopy”, 5th General conference of the Balkan physical union, section 6, 645 (2003).
55. J. F. Moulder, W. F. Stickel, P. E. Sobol, K. D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, Physical Electronics, p.85 (1995).
56. G. T. Tyuliev, K. L. Kostov, “XPS/HREELS study of NiO films grown on Ni(111)”, Physical Review B, 60, 2900 (1999).
57. G. H. Yu, F. W. Zhu, C. L. Chai, “X-ray photoelectron spectroscopy study of magnetic films”, Applied Physics. A, 76, 45 (2003).
58. S. Oswald, W. Brϋckner, “XPS depth profile analysis of non-stoichiometric NiO films”, Surface and Interface Analysis, 36, 17 (2004)
59. I. G. Casella, M. R. Guascito, M. G. Sannazzaro, “Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold surface electrodes”, Journal of Electroanalytical Chemistry, 462, 202 (1999).
60. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, “Handbook of X-ray photoelectron spectroscopy”, Perkin-Elmer corporation, p.80 (1979).
61. H. W. Nesbitt, D. Legrand, G. M. Bancroft, “Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators”, Physics and Chemistry of Minerals, 27, 357 (2000).
62. S. Park, D. A. Keszler, M. M. Valencia, R. L. Hoffman, “Transparent p-type conducting BaCu2S2 films”, Applied Physics Letters, 80, 4393 (2002).
63. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, “Degenerate p-type conductivity in wide-gap LaCuOS1-xSex (x=0-1) epitaxial films”, Applied Physics Letters, 82, 1048 (2003).
64. H. Yanagi, J. Tate, S. Park, C. H. Park, “p-type conductivity in wide-band-gap BaCuQF (Q=S,Se)”, Applied Physics Letters, 82, 2814 (2003).