簡易檢索 / 詳目顯示

研究生: 葉科宏
Yeh, Ko-Hong
論文名稱: 拓樸量子場論簡介
Introduction to topological quantum field theory
指導教授: 高橋亮甫
Takahashi, Ryosuke
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 61
中文關鍵詞: 拓樸量子場論霍萬諾夫同調
外文關鍵詞: Topological quantum field theory, Khovanov homology
相關次數: 點閱:51下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸量子場論(Topological quantum field theory)是量子場論 (Quantum field theory) 的一個專注於拓樸性質的分支。對拓樸量子場論的研究導致了許多重要的三維和四維流形拓樸不變量的發現。本篇論文旨在提供拓樸量子場論的入門介紹。第二章將介紹拓樸量子場論的函子化公理。第三章將探討二維拓樸量子場論的特性,並建立二維拓樸量子場論與交換弗羅貝尼烏斯代數(commutative Frobenius algebra)之間的一一對應關係。在第四章,我們將以霍萬諾夫同調(Khovanov homology)作為二維拓樸量子場論的一個實例來介紹。最後,在第五章中,我們將簡述近年高維度拓樸量子場論的研究進展。

    Topological quantum field theory (TQFT) is a branch of quantum field theory (QFT) that focuses on topological properties. The development of TQFTs has led to the discovery of various important topological invariants for 3-manifolds and 4-manifolds. This article aims to provide introductory notes on TQFT. In Chapter 2, we will provide the functorial axiomatisation of TQFT. Then we characterize 2D TQFTs and establish an one-to-one correspondence between 2D TQFTs and commutative Frobenius algebras in Chapter 3. In Chapter 4, we introduce Khovanov homology as a nontrivial example of 2D TQFTs. Finally, we provide a brief survey of higher-dimensional TQFTs in Chapter 5.

    摘要 i Abstract ii 誌謝 iii Contents iv 1 Introduction 1 2 Axioms of TQFT 3 2.1 Cobordism 3 2.2 Category theory 4 2.3 Monoidal category 7 2.4 Monoidal functor 9 2.5 nCob 11 2.6 The Atiyah-Segal axioms 11 3 2D TQFT 13 3.1 K-algebras and K-coalgebras 13 3.2 Frobenius algebra 14 3.3 The graph notation 14 3.4 Relations between 2D TQFTs and commutative Frobenius algebras 16 4 Khovanov homology 19 4.1 Knots 19 4.2 The Jones polynomial 24 4.3 Smoothing diagram 28 4.4 Chain complex and graded vector space 30 4.5 Bi-graded cochain complex 33 4.6 Khovanov complex 35 4.7 Khovanov bracket and Khovanov homology 43 5 Higher dimensional TQFTs 50 Bibliography 52

    [1] Lowell Abrams. “Two-dimensional topological quantum field theories and Frobenius algebras”.In: Journal of Knot theory and its ramifications 5.05 (1996), pp. 569–587.
    [2] C.C. Adams. The Knot Book. W.H. Freeman, 1994. isbn: 9780821886137. url: https://books.google.com.tw/books?id=M-B8XedeL9sC.
    [3] James W Alexander and Garland B Briggs. “On types of knotted curves”. In: Annals of Mathematics (1926), pp. 562–586.
    [4] Michael F Atiyah. “Topological quantum field theory”. In: Publications Math ́ematiques de l’IHES ́68 (1988), pp. 175–186.
    [5] John C Baez and James Dolan. “Higher-dimensional algebra and topological quantum field theory”. In: Journal of mathematical physics 36.11 (1995), pp. 6073–6105.
    [6] Dror Bar-Natan. “On Khovanov’s categorification of the Jones polynomial”. In: Algebraic &Geometric Topology 2.1 (2002), pp. 337–370.
    [7] Bruce H Bartlett. “Categorical aspects of topological quantum field theories”. In: arXiv preprint math/0512103 (2005).
    [8] Alexander A Belavin et al. “Pseudoparticle solutions of the Yang-Mills equations”. In: Physics Letters B 59.1 (1975), pp. 85–87.
    [9] Louis Crane. “2-d physics and 3-d topology”. In: Communications in mathematical physics 135 (1991), pp. 615–640.
    [10] Louis Crane, Louis H Kauffman, and David N Yetter. “State-sum invariants of 4-manifolds”. In:Journal of Knot Theory and Its Ramifications 6.02 (1997), pp. 177–234.
    [11] Louis Crane and David Yetter. “A categorical construction of 4D topological quantum field theories”. In: Quantum topology 3 (1993), p. 120.
    [12] R.H. Crowell and R.H. Fox. Introduction to Knot Theory. Graduate Texts in Mathematics. Springer New York, 2012. isbn: 9781461299356. url: https://books.google.com.tw/books?id=v9bTBwAAQBAJ.
    [13] Simon K Donaldson. “An application of gauge theory to four-dimensional topology”. In: Journal of Differential Geometry 18.2 (1983), pp. 279–315.
    [14] Olivia Dumitrescu and Motohico Mulase. “An invitation to 2D TQFT and quantization of Hitchin spectral curves”. In: arXiv preprint arXiv:1705.05969 (2017).
    [15] Ralph H Fox. “Metacyclic invariants of knots and links”. In: Canadian Journal of Mathematics 22.2 (1970), pp. 193–201.
    [16] George K Francis and Jeffrey R Weeks. “Conway’s ZIP proof”. In: The American mathematical monthly 106.5 (1999), pp. 393–399.
    [17] Daniel Freed. “The cobordism hypothesis”. In: Bulletin of the American Mathematical Society 50.1 (2013), pp. 57–92.
    [18] C McA Gordon and John Luecke. “Knots are determined by their complements”. In: Journal of the American Mathematical Society 2.2 (1989), pp. 371–415.
    [19] Daniel Grady and Dmitri Pavlov. “The geometric cobordism hypothesis”. In: arXiv preprint arXiv:2111.01095 (2021).
    [20] Vaughan FR Jones. “A polynomial invariant for knots via von Neumann algebras”. In: Bulletin of the American Mathematical Society 12 (1985), pp. 103–111.
    [21] Mikhail Khovanov. “A categorification of the Jones polynomial”. In: Duke Mathematical Journal 101.3 (2000), pp. 359 –426. doi: 10.1215/S0012-7094-00-10131-7.
    [22] Robion Kirby. “A calculus for framed links in S^3”. In: Inventiones mathematicae 45.1 (1978), pp. 35–56.
    [23] Joachim Kock. Frobenius algebras and 2-d topological quantum field theories. 59. Cambridge University Press, 2004.
    [24] Giovanna Le Gros. “The Khovanov homology of knots”. In: (2015).
    [25] WB Raymond Lickorish. “A representation of orientable combinatorial 3-manifolds”. In: Annals of Mathematics (1962), pp. 531–540.
    [26] Jacob Lurie. “On the classification of topological field theories”. In: Current developments in mathematics 2008.1 (2008), pp. 129–280.
    [27] Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer Science & Business Media, 2013.
    [28] Gregory Moore and Nathan Seiberg. “Classical and quantum conformal field theory”. In: Com munications in Mathematical Physics 123 (1989), pp. 177–254.
    [29] Gregory Moore and Edward Witten. “Integration over the u-plane in Donaldson theory”. In: arXiv preprint hep-th/9709193 (1997).
    [30] Hirosi Ooguri. “Topological lattice models in four dimensions”. In: Modern Physics Letters A 7.30 (1992), pp. 2799–2810.
    [31] Kurt Reidemeister. “Elementare begr ̈undung der knotentheorie”. In: 5 (1927), pp. 24–32.
    [32] Nicolai Reshetikhin and Vladimir G Turaev. “Invariants of 3-manifolds via link polynomials and quantum groups”. In: Inventiones mathematicae 103.1 (1991), pp. 547–597.
    [33] Albert S Schwarz. “The partition function of degenerate quadratic functional and Ray-Singer invariants”. In: Letters in Mathematical Physics 2.3 (1978), pp. 247–252.
    [34] Graeme Segal. “Topological structures in string theory”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359.1784 (2001), pp. 1389–1398.
    [35] Graeme B Segal. “The definition of conformal field theory”. In: Differential geometrical methods in theoretical physics. Springer, 1988, pp. 165–171.
    [36] Nathan Seiberg and Edward Witten. “Electric-magnetic duality, monopole condensation, and confinement in N= 2 supersymmetric Yang-Mills theory”. In: Nuclear Physics B 426.1 (1994), pp. 19–52.
    [37] Christoffer S ̈oderberg. Khovanov Homology of Knots. 2017.
    [38] Kursat Sozer and Alexis Virelizier. “3d TQFTs and 3-manifold invariants”. In: arXiv preprint arXiv:2401.10587 (2024).
    [39] Heinrich Tietze. “Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten”. ̈ In: Monatshefte f ̈ur Mathematik und Physik 19 (1908), pp. 1–118.
    [40] V.G. Turaev. Quantum Invariants of Knots and 3-manifolds. De Gruyter studies in mathematics. New York, 2010. isbn: 9783110221831. url: https://books.google.com.tw/books?id=w7dActmezxQC.
    [41] Vladimir G Turaev and Oleg Ya Viro. “State sum invariants of 3-manifolds and quantum 6j-symbols”. In: Topology 31.4 (1992), pp. 865–902.
    [42] Andrew H Wallace. “Modifications and cobounding manifolds”. In: Canadian Journal of Mathematics 12 (1960), pp. 503–528.
    [43] Edward Witten. “Quantum field theory and the Jones polynomial”. In: Communications in Mathematical Physics 121.3 (1989), pp. 351–399.
    [44] Edward Witten. “Topological quantum field theory”. In: Communications in Mathematical Physics 117.3 (1988), pp. 353–386.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE