簡易檢索 / 詳目顯示

研究生: 陳冠維
Chen, Kuan-Wei
論文名稱: 壓痕試驗於金屬玻璃中形成剪切帶之研究
Study of Shear Bands Induced by Indentation in Bulk Metallic Glasses
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 107
中文關鍵詞: 金屬玻璃剪切帶微/奈米壓痕試驗微結構聚焦離子束機械性質
外文關鍵詞: Metallic glass, Shear band, Micro/nano indentation, Microstructure, Focused ion beam, Mechanical properties
相關次數: 點閱:118下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的,在於建立壓痕試驗於非晶質合金材料中,所形成剪切帶之預測模型,並利用實驗結果,來驗證預測模型之準確性。本研究之獨特性,在於將壓痕引發之半圓形剪切帶視為虛擬的壓頭,並且以未變型之試件表面取代以往以壓頭尖瑞為量測的基準點。根據基礎的力平衡方程式,推導出半圓形剪切帶之半徑近似於一等比級數關係。其等比級數之公比除了可由實驗量測而得之外,亦可經由材料的硬度與降伏強度求得。另外,本研究在理論推導的過程中,發現非晶質合金在壓痕試驗引發的塑性變形區,其與壓痕接觸半徑之比例恆為一常數。此常數與材料的硬度與降伏強度有直接的關係。因此可由材料性質預先推估非晶質合金受外力作用時,其相應之塑性變型區之大小。本研究使用了三種不同成份之非晶質合金(鋯基、銅基、鎂基)的實驗數據來加以驗證,理論預測與實驗結果皆相當吻合。
    本研究亦建立了第二型剪切帶之預測方法。利用第一型剪切帶(半圓形剪切帶)與第二型剪切帶之間的幾何分析,本研究發現第二型剪切帶之半徑為該相應第一型剪切帶半徑的√2倍。對於金屬玻璃在壓痕試驗過程中,會在力-位移曲線上產生躍進(pop-in),一般認為此躍進是由於剪切帶的產生所引發。本研究之剪切帶模型則直接在理論上證實了力-位移曲線中的躍進,確實是由剪切帶的產生所引發。
    此外,由於金屬玻璃的延展性不佳,造成了其工程與材料上應用有所限制。目前文獻上所記載之增加延展性方法不外乎在基材中導入第二結晶相,使之能阻擋金屬玻璃發生塑性變形時,其剪切帶間之連結與傳遞。然而本研究利用尺度效應,將鋯基金屬玻璃切削至奈米尺度,結果發現原本極為硬脆的鋯基金屬玻璃,在尺度效應的影響之下其延展性大幅度提升。此實驗結果將可對金屬玻璃的應用帶來突破。
    本研究亦使用掃描式探針顯微鏡(AFM)、雙束型聚焦離子束(DB-FIB)、掃描式電子顯微鏡(SEM)以及穿透式電子顯微鏡(TEM)對剪切帶之形貌和微組織進行了觀察。結果發現本研究所使用的三種非晶質合金在剪切帶產生的前後,其微組織仍為非晶。由此可知本研究所測得的剪切帶圖樣皆為滑移變形所造成。

    In the present study, an analytical model is developed to predict the indentation-induced shear band morphologies in bulk amorphous alloys (bulk metallic glass, BMG). According the force balance of shear band annulus, it is found that the radius ratio of any two adjacent shear band circles is approximately a constant value. The present model is also used to establish the relationship between pop-ins formed during the loading process of nanoindentation and primary shear bands. It was mathematically confirmed that the pop-ins are associated with the formations of shear bands. The present study also established an orthogonal circle model for investigating primary shear bands (PSB) and secondary shear bands (SSB) of bulk metallic glasses obtained from Vickers indentations. It was found that the radii of orthogonal SSB circles are √2 times as large as the radius of its corresponding PSB circle. Good agreement between the shear band circles predicted by the present model and the experiment results was obtained for both PSB and SSB.
    In order to make a breakthrough for the limitation of BMG’s applications, the ductility of Zr-based metallic glass in nano-scale was investigated in the present study by using a in-situ TEM PicoIndenter system. The result revealed that (Zr48Cu36Al8Ag8)99.625Si0.375 nano-pillars show a significant improvement of ductility. The size effect turned the Zr-based metallic glass, which is extremely brittle in macro-scale, into a ductile material in nano-scale.
    The morphologies and microstructures of shear bands in BMGs used in the present study were observed and discussed by using AFM, SEM, DB-FIB, and TEM.

    摘要.……………………………………………………………Ⅰ Abstract………………………………………………………Ⅱ Acknowledgements……………………………………………………Ⅴ Index……………………………………………………………………Ⅵ Captions of Figures……………………………………………Ⅸ Nomenclatures……………………………………………………ⅩⅤ Chapter 1 Introduction…………………………………………………1 1-1 Motivations…………………………………………………………1 1-2 Literatures reviews………………………………………………1 1-2-1 Shear bands effects in mechanical properties of bulk metallic glasses……1 1-2-2 Patterns of shear bands induced by indentation…………………………3 1-2-3 Pop-ins exhibits in load-displacement curve during indentation process..5 1-2-4 Ductility enhancement of bulk metallic glasses…………………………6 1-3 Research contents……………………………………………………………..7 Chapter 2 Theoretical model for shear bands…………………………………………10 2-1 Concentric circle model for primary shear band (PSB)………………………10 2-2 Modeling for depth ratio of pop-ins…………………………………………..19 2-3 Determination of secondary shear band (SSB)………………………………20 Chapter 3 Experimental details…………………………………………………………28 3-1 Sample preparations of bulk metallic glass……………………………….......28 3-2 Indentation test of bulk metallic glass……………………….……….……….29 3-3 Microstructure and morphology observations of shear bands………………..30 Chapter 4 Result and discussion………………………………………………………40 4-1 Radius ratios of primary shear bands (PSB)………………………….………40 4-1-1 Primary shear bands in previous literatures…………………………..40 4-1-2 Radius ratios of primary shear bands in the present study………….…42 4-1-3 Deformation zones induced by Vickers indentations………………...43 4-2 Predictions of secondary shear bands circles (SSB)………………………….45 4-3 Verification of the site ratio between two adjacent pop-ins…………………..48 4-4 The effect of loading rate during nanoindentation process…………………..50 4-5 Microstructure observations of shear bands…………………………………..52 4-6 Topography observations of shear band terraces………………………….......53 4-7 Size effect observations of mechanical responses….…………………………55 Chapter 5 Conclusions and Future Works………………………………………89 5-1 Conclusions……………………………………………89 5-2 Future works…………………………………………………………………92 References………………………………………………………95 Vita………………………………………………………………104 Publications……………………………………………………105

    [01] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta materialia 48 (2000) 279.
    [02] J.R. Scully, A. Gebert, J.H. Payer, “Corrosion and related mechanical properties of bulk metallic glasses”, Journal of Material Research 22 (2007) 302.
    [03] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, “Ultra-high strength above 5000MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys”, Acta Materialia 52 (2004) 1631.
    [04] S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, U. Ramamurty, “Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass”, Intermetallics 12 (2004) 1097.
    [05] S. Jana, U. Ramamurty, K. Chattopadhyay, Y. Kawamura, “Subsurface deformation during Vickers indentation of bulk metallic glasses”, Materials Science and Engineering A 375-377 (2004) 1191.
    [06] H. Bei, S. Xie, E.P. George, “Softening caused by profuse shear banding in a bulk metallic glass”, Physical Review Letters 96 (2006) 105503.
    [07] J. Eckert, J. Das, S. Pauly, C. Duhamel, “Mechanical properties of bulk metallic glasses and composites” Journal of Material Research 22 (2007) 285.
    [08] W.H. Jiang, M. Atzmon, “The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study”, Acta Materialia 51 (2003) 4095.
    [09] W.H. Jiang, F.E. Pinkerton, M. Atzmon, “Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy”, Acta Materialia 53 (2005) 2469.
    [10] F.F. Wu, Z.F. Zhang, S.X. Mao, A. Peker, J. Eckert, “Effect of annealing on the mechanical properties and facture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 bulk-metallic glass composite”, Physical Review B 75 (2007) 134201.
    [11] S. Xie, E.P. George, “Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing”, Acta Materialia 56 (2008) 5202.
    [12] A. C. Fischer-Cripps, Nanoindentation, Springer, NY (2004).
    [13] Z. Xue, Y. Huang, K.C. Hwang, M. Li, “The influence of indenter tip radius on the micro-indentation hardness”, Journal of Engineering Materials and Technology 124 (2002) 371.
    [14] F. Zhang, R. Saha, Y. Huang, W.D. Nix, K.C. Hwang, S. Qu, M. Li, “Indentation of a hard film on a soft substrate: Strain gradient hardening effects”, International Journal of Plasticity 23 (2007) 25.
    [15] P.H. Segerstad, S. Toll, R. Larsson, “Computational modelling of dissipative open-cell cellular solids at finite deformations”, International Journal of Plasticity 25 (2008) 802.
    [16] R. Haj-Ali, H.K. Kim, S.W. Koh, A. Saxena, R. Tummala, “Nonlinear constitutive models from nanoindentation tests using artificial neural networks”, International Journal of Plasticity 24 (2008) 371.
    [17] Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, R. Komanduri, “Orientation effects in nanoindentation of single crystal copper”, International Journal of Plasticity 24 (2008) 1990.
    [18] S.P. Lele, L. Anand, “A large-deformation strain-gradient theory for isotropic viscoplastic materials”, International Journal of Plasticity 25 (2009) 420.
    [19] Z. Shi, X. Feng, Y. Huang, J. Xiao, K.C. Hwang, “The equivalent axisymmetric model for Berkovich indenters in power-law hardening materials”, International Journal of Plasticity 26 (2010) 141.
    [20] P. Thamburaja, H. Pan, F.S. Chau, “The evolution of microstructure during twinning: Constitutive equations, finite-element simulations and experimental verification”, International Journal of Plasticity 25 (2009) 2141.
    [21] K.N. Arun, P. Edward, G. Peter, F. Diana, D.K. Ronald, “Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study”, International Journal of Plasticity 24 (2008) 2016.
    [22] C.L. Liu, T.H. Fang, J.F. Lin, “Atomistic simulations of hard and soft films under nanoindentation”, Materials Science and Engineering: A 452-453 (2007) 135.
    [23] H. Zhang, X. Jing, G. Subhash, L.J. Kecskes, R.J. Dowding, “Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation”, Acta Materialia 53 (2005) 3849.
    [24] H. Xie, Y. Li, D. Yang, P. Hodgson, C. Wen, “Plastic deformation in the annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass under indenter”, Journal of Alloys and Compounds (2008) doi: 10.1016/j.jallcom.2008.07.088.
    [25] B.G. Yoo, J.Jang, “A study on the evolution of subsurface deformation in a Zr-based bulk metallic glass during spherical indentation”, Journal of Physics D: Applied Physics 41 (2008) 074017.
    [26] S.X. Song, J.S.C. Jang, T.G. Nieh, “Analyses of shear band emission in a Mg-based bulk metallic glass deformed at different nanoindentation rates”, Intermetallics 16 (2008) 676.
    [27] T. Burgess, K.J. Laws, M. Ferry, “Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation”, Acta Materialia 56 (2008) 4829.
    [28] L. Liu, K.C. Chan, “Plastic deformation of Zr-based bulk metallic glasses under nanoindentation”, Materials Letters 59 (2005) 3090.
    [29] B.G. Yoo, K.W. Lee, J. Jang, “Instrumented indentation of a Pd-based bulk metallic glass: Constant loading-rate test vs constant strain-rate test”, Jorunal of Alloys and compounds (2008) doi: 10.1016/j.jallcom.2008.07.163.
    [30] L. Wang, S.X. song, T.G. Nieh, “Assessing plastic shear resistance of bulk metallic glasses under nanoindentation”, Applied physics Letters 92 (2008) 101925.
    [31] C.A. Schuh, T.G. Nieh, “A nanoindentation study of serrated flow in bulk metallic glasses”, Acta Materialia 51 (2003) 87.
    [32] K.L.Johnson, Contact Mechanics, Cambridge, New York, (1989) 174.
    [33] A.C. Fischer-Cripps, Nanoindentation, Springer, New York, (2004) 9.
    [34] H. Bei, Z.P. Lu, E.P. George, “Theoretical strength and the onset of plasticity n bulk metallic glasses investigated by nanoindentation with a spherical indenter”, Physical Review Letters 93 (2004) 125504.
    [35] C. Su, L. Anand, “Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation”, Acta Materialia 54 (2006) 179.
    [36] Z.F. Zhang, G. He, J. Eckert, L. Schultz, “Fracture mechanisms in bulk metallic glassy materials”, Physical Review Letters 91 (2003) 045505.
    [37] U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadgyay, “Hardness and plastic deformation in a bulk metallic glass”, Acta Materialia 53 (2005) 705.
    [38] X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, “Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy”, Intermetallics 17 (2009) 607.
    [39] H. Kato, A. Inoue, “Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles”, Materials Transactions, JIM 38 (1997) 793.
    [40] K.Q. Qiu, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, “Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite”, Intermetallics 10 (2002) 1283.
    [41] Z. Bian, M.X. Pan, Y. Zhang, W.H. Wang, “Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites”, Applied Physics Letters 81 (2002) 4739.
    [42] J.S.C. Jang, J.Y. Ciou, T.H. Huang, J.C. Huang, X.H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters 92 (2008) 011930.
    [43] J.S.C. Jang, S.R. Jian, T.H. Li, J.C. Huang, C.Y.A. Tsao, C.T. Liu, “Structural and mechanical characterizations of ductile Fe particle-reinforced Mg-based bulk metallic glass composites”, Journal of Alloy and compounds 485 (2009) 290.
    [44] D.C. Hofmann, J.Y. Suh, A.Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature 45 (2008) 1085.
    [45] M.E. Launey, D.C. Hofmann, J.Y. Suh, H. Kozachkov, W.L. Johnson, R.O. Ritchie, “Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites”, Applied Physics Letters 94 (2009) 241910.
    [46] C. Fan, C. Li, A. Inoue, “Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys”, Physical Review B 61 (2000) 3761.
    [47] F. Szuecs, C.P. Kin, W.L. Johnson, “Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite”, Acta Materialia 49 (2001) 1507.
    [48] J.T. Fan, A.Y. Chen, M.W. Fu, J. Lu, “A novel structural gradient metallic glass composite with enhanced mechanical properties”, Scripta Materialia 61 (2009) 608.
    [49] J.T. Fan, F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, S.X. Mao, “Effect of microstructures on the compressive deformation and fracture behaviors of Zr47Cu46Al7 bulk metallic glass composites”, Journal of Non-Crystalline Solids 353 (2007) 4707.
    [50] R. Raghavan, V.V. Shastry, A. Kumar, T. Jayakumar, U. Ramamurty, “Toughness of as-cast and partially crystallized composites of a bulk metallic glass”, Intermetallics 17 (2009) 835.
    [51] F. Jiang, D.H. Zhang, L.C. Zhang, Z.B. Zhang, L. He, J. Sun, Z.F. Zhang, “Microstructure evolution and mechanical properties of Cu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases”, Materials Science and Engineering A 467 (2007) 139.
    [52] A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, L. Schultz, “Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys”, NanoStructured Materials 10 (1998) 805-817.
    [53] J. Eckert, M. Seidel, L.Q. Xing, I. Börner, B. WeiB, “Nanophase composites in easy glass forming systems”, NanoStructured Materials 12 (1999) 439.
    [54] J.J. Lewandowski, A.L. Greer, “Temperature rise at shear bands in metallic glasses”, Nature Materials 5 (2006) 15-18.
    [55] http://www1.chm.colostate.edu/Files/CIFDSC/dsc2000.pdf
    [56] http://camcor.uoregon.edu/polymer-character/dsc_2920.shtml
    [57] http://www.mse.isu.edu.tw/
    [58] http://cmnst.ncku.edu.tw/bin/home.php
    [59] http://www.hysitron.com/products/pi-series-tem-picoindenter/
    [60] W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, P.K. Liaw, “Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass”, International Journal of Plasticity 24 (2008) 1-16.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE