簡易檢索 / 詳目顯示

研究生: 林于喬
Lin, Yu-Chiao
論文名稱: 直覺式模糊數之品質機能展開模式
An intuitionistic fuzzy model for exploiting quality function deployment
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 品質機能展開直覺式模糊集合多目標規劃
外文關鍵詞: Quality function deployment, Intuitionistic fuzzy sets, Multi-objective programming
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技日新月異,產品生命週期愈來愈短,如何快速地掌握顧客需求,是企業在產品開發時所必須重視的問題。品質機能展開是企業常用以掌握顧客需求並將顧客需求轉換成具體設計規格的方法,而品質屋是品質機能展開中最重要的工具。品質屋的第一步是蒐集顧客需求及其相對重要性,而在過去的文獻中,大多是以直接給予整數值(point scale)或者讓顧客以語意變數來描述,再將其轉換成模糊數(Fuzzy number)的方法。再者,在競爭激烈的市場環境下,企業在進行產品開發時,也必須考慮到競爭者的情況,以及企業在生產產品時所受到的實際限制,像是成本、技術困難度等等。為能更充分的表達顧客需求意見之不確定資訊,因此,本研究將利用直覺式模糊數做為顧客需求的評估值而發展出品質機能展開模式,藉由直覺式模糊數中的屬於資訊、不屬於資訊及猶豫資訊,來模擬人類思維中不確定性的部分,以提高顧客需求表達之真實性。
    本研究使用直覺式模糊數作為顧客需求之評估值,並將模式分為三個階段。第一階段為蒐集並整合專家意見,利用群體決策的方法,由專家對產品的顧客需求進行語意評估,並整合專家意見;第二階段為品質屋階段,將所得到的語意變數評估值進行競爭分析、以及將相對應的顧客需求轉換成設計需求,幫助企業了解市場情況,以及避免設計需求間的相互影響,更準確的得到設計需求重要性;第三階段則是考慮設計需求在實際執行時,可能面臨的成本、技術困難度限制,利用多目標規劃求得各項設計需求的實際執行度。最後,本研究再以Chan and Wu (2005)所提出之範例進行比較與分析,並驗證模式之合理性。

    With the advance and innovation of technology, product life-cycles have progressively grown shorter. Therefore, firms need to quickly determine customer requirements during product development. Quality function deployment (QFD) is a product development process which maximizes customer satisfaction. The first phase of QFD, usually called house of quality (HOQ), translates the voice of customer (VoC) into engineering characteristics. The first step of HOQ is to identify customers’ needs and their relative ranking of those needs. Most of the existing literature uses point scales or linguistic variables to describe customer opinions, and transforms linguistic variables into fuzzy numbers. In addition to customer needs, firms also need to consider their competitors and their own limitations. In order to increase the accuracy of customers’ requirements, this research mainly uses intuitionistic fuzzy numbers to describe customer opinions, denoting uncertainty by membership, non-membership and information regarding hesitancy of intuitionistic fuzzy numbers.
    This research uses intuitionistic fuzzy numbers to deal with the uncertainty of customer requirements, and the proposed model consists of three steps: (1) using the group decision method to collect and aggregate experts’ linguistic opinions (2) implementing competitive analysis as well as converting the corresponding customer requirements into design requirements in order to assist firms in understanding the competitive market, avoiding the correlation among design requirements and getting more accurate design requirements (3)using multi-objective programming to determine the fulfillment level of each design requirement based upon resource limitations and technical difficulties .Finally, we use a practical example to demonstrate the rationality and superiority of the proposed model by comparing it to the method used in Chan and Wu(2005).

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究流程 4 1.5 論文架構 5 第二章 文獻探討 7 2.1 直覺式模糊集合理論 7 2.2 品質機能展開 16 2.3 多目標規劃法 27 2.4 小結 29 第三章 直覺式模糊數之品質機能展開模式建立 30 3.1 研究構想 30 3.2模式建構與求解 33 3.3小結 46 第四章 範例演算 47 4.1範例一:語意變數轉換為直覺式模糊數 47 4.2範例二:以直覺式模糊數評估 56 4.3利用本研究模式部分(以範例一為例) 61 4.4小結 70 第五章 結論與未來研究方向 72 5.1 研究結論 72 5.2 未來研究方向 74 參考文獻 75 附 錄 79 表目錄 表2-1 決定重要性排序的語意變數 9 表2-2 決定程度的語意變數 10 表2-3 品質機能展開的有形及無形利益 16 表2-4 品質機能展開決策模式文獻整理 24 表2-5 過去文獻在品質屋各階段情況整理 26 表4-1 中國菜的十項顧客需求 48 表4-2 針對顧客需求找出的九項相對應設計需求 48 表4-3 各項顧客需求的重要性語意評估 49 表4-4 專家對於各項顧客需求的競爭性評估 50 表4-5 專家對於各項顧客需求的未來目標評估 50 表4-6 專家對於顧客需求與設計需求的關係矩陣評估 50 表4-7 顧客需求重要性評估值轉換成直覺式模糊數型式 52 表4-8 整合後的顧客需求相對重要性及競爭分析評估結果(專家權重相同) 52 表4-9 執行競爭分析後的結果(專家權重相同) 53 表4-10 進行競爭分析後的設計需求權重結果 54 表4-11 整合專家意見後與CW方法之排序比較(未考慮競爭分析) 55 表4-12 執行競爭分析後與CW方法之排序比較 55 表4-13 設計需求相對重要性與CW方法之排序比較(未考慮競爭分析) 55 表4-14 設計需求最終重要性與CW方法之排序比較(考慮競爭分析) 55 表4-15 顧客需求重要性評估值轉換成直覺式模糊數型式(範例二) 57 表4-16 整合後的顧客需求相對重要性及競爭分析評估結果(範例二) 58 表4-17 執行競爭分析後的結果(範例二) 58 表4-18 進行競爭分析後的設計需求權重結果(範例二) 58 表4-19 整合專家意見後與CW方法之排序比較(未考慮競爭分析) 60 表4-20 執行競爭分析後與CW方法之排序比較 60 表4-21 設計需求相對重要性與CW方法之排序比較(未考慮競爭分析) 60 表4-22 設計需求最終重要性與CW方法之排序比較(考慮競爭分析) 60 表4-23 專家在不同顧客需求之權重及整合後之顧客需求權重 62 表4-24 專家權重相同與不相同的整合結果比較 63 表4-25 整合不同權重的專家評估競爭分析評估值 63 表4-26 專家權重相同與不相同之熵值比較 64 表4-27 關係矩陣正規化中的設計需求相關矩陣(考慮DR4及DR6) 65 表4-28 關係矩陣是否經過正規化的排序結果比較(加入DR4.DR6相關性) 66 表4-29 決策模式各項參數與求解結果 67 表4-30 執行設計需求決策模式與否的權重差異 68 表4-31 執行競爭分析與未執行競爭分析的權重差異 68 表4-32 執行競爭分析與未執行競爭分析的差異(專家權重相同) 68 表4-33 執行質機能展開公司在顧客需求的現在表現及未來目標 70 圖目錄 圖1-1 研究流程圖 5 圖2-1 品質機能展開四階段圖 18 圖2-2 品質屋(HOQ)之基本架構圖 19 圖3-2 Wasserman正規化方法拆解步驟 42 圖3-3 直覺式模糊數加法的運算邏輯 43 圖4-1 Chan and Wu (2005)研究方法架構圖 48 圖4-2 關係矩陣是否經過正規化的結果比較圖(加入DR4.DR6相關性) 66 圖4-3 執行設計需求決策模式與否的差異 68

    Akao, Y. ,1990. “ Quality function deployment: integrating customer requirements into product design. ” Cambridge, MA: Productivity Press

    Armacost, R.L., Componation, P.J., Mullens, M.A., Swart, W.W., 1994. “ An AHP framework for prioritizing customer requirements in QFD: an industrialized housing application. ” IIE Transactions 26, 72–79.

    Atanassov, K. T. 1986. “Intuitionistic fuzzy sets. ”Fuzzy Sets and Systems 20 (1), 87-96.

    Burillo, P., and Bustince, H., 1996. “Entropy on intuitionistic fuzzy sets and interval-valued fuzzy sets, ”Fuzzy Sets and Systems,78, 305–316.

    Buyukozkan, G. and Feyzioglu, O., 2005, “Group decision making to better respond customer needs in software development, ”Computers and Industrial Engineering, 48(2), 427-441.

    Chan, L.K., Kao, H.P., Ng, A., Wu, M.L., 1999. “ Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. ” International Journal Production Research 37, 2499–2518.

    Chan, L.K., Wu, M.L., 2005. “A systematic approach to quality function deployment with a full illustrative example. ” Omega 33, 119–139

    Chen, L.-H., Ko, W.-C., 2009a. “Fuzzy linear programming models for new product design using QFD with FMEA, ” Applied Mathematical Modelling (33),633–647.

    Chen, L.-H., Ko, W.-C., 2009b. “ Fuzzy approaches to quality function deployment for new product design. ” Fuzzy Sets and Systems 160 (18), 2620–2639.

    Chen, L.-H., Ko, W.-C., 2010. “Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept, ” European Journal of Operational Research (201),619–632.

    Chen, L. H. and Weng, M. C. , 2003. “A fuzzy model for exploiting quality function deployment, ” Mathematical and Computer Modelling, 38, 559-570.

    Chen, L.H., Weng, M.C., 2006. “An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. ” European Journal of Operational Research 172, 230–248.

    Chen, S.M. and Tan, J.M., 1994. “Handling multicriteria fuzzy decision-making problems based on vague set theory, ”Fuzzy Sets and Systems , 67,163–172.

    Chen, T.Y., 2011. “A comparative analysis of score functions for multiple criteria decision making in intuitionistic fuzzy settings, ” Information Sciences, 181,3652–3676.

    Cohen, L, 1995. “Quality function deployment: How to make QFD work for you. ” Massachusetts: Addison-Wesley.

    De, S.K., Biswas, R. and Roy, A.R., 2000. “Some operations on intuitionistic fuzzy sets, ” Fuzzy Sets and Systems,114, 477–484.

    Freitas, A.,A. , 2005. “ A critical review of multi-objective optimization in data mining: a position paper. ”ACM SIGKDD Explorations Newsletter 6 (2), 77–86.

    Fung, R.Y.K., Tang, J., Tu, Y., and Wang, D., 2002. “Product design resources optimization using a non-linear fuzzy quality function deployment model. ” International Journal of Production Research 40 (3), 585–599.

    Ghyym, S. H., 1999. “A semi-linguistic fuzzy approach to multi-actor decision-making: application to aggregation of experts’ judgments,” Annals of Nuclear Energy, 26, 1097-1112.

    Hauser, J.R., Clausing, D., 1988. “ The house of quality. ” Harvard Business Reviews 66, 63–73.

    Herrera, F., Herrera-Viedma, E. and Chiclana, F., 2000. “A fusion approach for managing multi-granularity linguistic term sets in decision making,” Fuzzy Sets and Systems, 114, 43-58.

    Ho, E.S.S.A., Lai, Y.J, Chang, S.I., 1999. “ An integrated group decision-making approach to quality function deployment. ” IIE Transactions 31, 553–567.

    Hong, D. H., and Choi, C.H., 2000. “Multicriteria fuzzy decision-making problems based on vague set theory, ” Fuzzy Sets Systems, 114, 103–113.

    Kahraman, C., Ertay, T., Bu¨yu¨ko¨zkan, G., 2006. “A fuzzy optimization model for QFD planning process using analytic network approach, ” European Journal of Operational Research (171), 390–411.

    Koopmans, T. C., 1951, “ Analysis of Production As an Efficient Combination of Activities, in Activity Analysis of Production and Allocation, ”T. C. Koopmans (ed.), Cowles Commission Monograph 13, pp. 33-97.

    Kuhn, H. W. and Tucker, A. W., 1951, “Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistic and Probability, ” in J. Neyman (ed.), University of California Press, Berkeley, pp. 481-491.

    Kwong, C.K., Bai, H., 2002. “A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. ” Journal of Intelligent Manufacturing 13, 367–377.

    Lai, Y.J., Ho, E.S.S.A., Chang, S.I., 1998. “ Identifying customer preferences in quality function deployment using group decision-making techniques. ” In: Usher, J.M., Roy, U., Parsaei, H.R. (Eds.), Integrated Product and Process Development: Methods, Tools, and Technologies. Wiley, New York, pp. 1–28 (Chapter 1)

    Li, D.F., 2011. “The GOWA operator based approach to multiattribute decision making using intuitionistic fuzzy sets, ” Mathematical and Computer Modelling , 53,1182–1196.

    Lyman, D., 1990. “Deployment normalization. ” Transactions from the Second Symposium on Quality Function Deployment, pp. 307–315.

    Marglin, S., 1967. Public Investment Criteria. MIT Press, Cambridge, M.A

    Park, T. and Kim, K.-J. ,1998. “Determination of an optimal set design requirements using house of quality, ”Journal of Operations Management, 16, 569-581.

    ReVelle, J. B., Moran, J. W. and Cox, C. A., 1998. “The QFD Handbook, ”John Wiley and Sons, New York.

    Sohn, S. Y. and Choi, I. S., 2001.“Fuzzy QFD for supply chain management with reliability consideration, ” Reliability Engineering and System Safety, 72, 327-334.

    Sullivan, L. P., 1986. “Quality function deployment,” Quality Progress, 39-50.

    Szmidt, E., and Kacprzyk, J. 2001. “Distances between intuitionistic fuzzy sets, ” Fuzzy Sets and Systems,114,505–518.

    Vahdani, B. et al.,2013. “ A new design of the elimination and choice translating reality method for multi-criteria group decision-making in an intuitionistic fuzzy environment, ” Applied Mathematical Modelling,37(4), 1781–1799.

    Wasserman, G.S., 1993. “On how to prioritize design requirements during the QFD process. ” IIE Transactions 25 (3), 59–65.

    Xu, Z. S., 2005. “An overview of methods for determining OWA weights,”, International Journal of Intelligent Systems, 20, 843–865.

    Xu, Z.S., 2007. “Intuitionistic fuzzy aggregation operators, ” IEEE Transactions on Fuzzy Systems, 15 (6), 1179–1187.

    Zadeh, L. A., 1963. “Optimality and Non-Scalar-Valued Performance Criteria, ”IEEE Transactions on Automatic Control , 8, 59–60.

    Zadeh, L. A., 1965. “Fuzzy sets,” Information and Control, 8, 338-353.

    Zadeh, L. A., 1975. “The concept of linguistic variable and its application to approximate reasoning,” Part 1, Information Science, 8, 199-249.

    Zhou, M.,1998. “Fuzzy logic and optimization models for implementing QFD, ” Computers and Industrial Engineering, 35(1-2), 237-240.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE