簡易檢索 / 詳目顯示

研究生: 顏以豪
Yen, Yi-Hao
論文名稱: 以多主題建置個人化專家與解答之推薦系統-以Yahoo知識+為例
Personalized Expert and Answer Recommendation System by Multi-Topic Clustering
指導教授: 王惠嘉
Wang, Hei-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 專家搜尋資訊擷取個人化推薦社群網路投票模型
外文關鍵詞: Expert Finding, Information Retrieval, Personalized Recommendation, Social Network, Voting Model
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路的快速發展,網路幾乎成為大家尋找資訊、學習知識的主要管道,許多不同領域、不同目的的社群網路(Social Network)逐漸形成,成為人們尋求與分享資訊的主要平台。許多知識性質的社群網路也隨之興起,以互動式問答的方式,提供學習者與專家之間知識交流的媒介,隨者使用者、發文數、回答數的增加,知識平台的知識量也急速增加,但是也造成了資訊過載的問題,反而導致學習者不易在平台中尋得所需資訊,知識提供者(本研究稱之為”專家”)面對過多重複性的問題也可能失去了回答的意願,且許多有能力回答問題的潛在專家並未主動知道有人需要解決問題。因此,如何提供準確的有效答案與專家,以使專家可有效率的回答問題,成了亟需解決的問題。
      為了解決上述問題,過去研究相繼提出文件推薦系統及專家推薦系統以提供發問者所需資訊,在文字解答上著重於分析使用者所下的Query,並加入個人化技術與本體論(Ontology)進一步改善其推薦準確性,在專家推薦上則著重於分析該Query所屬的領域與使用者資訊以推薦相關專家;然而過去的推薦系統多半只提供單一資訊,並未考量發問者可能需要文字解答並與相關專家諮詢互動才足以解決問題。此外,過去研究在資訊的分析上也未考量發問者的問題可能包含多個領域以及每一位平台的使用者本身的學習效應,造成發問者的問題未能完全解決,而潛在專家未被主動告知導致大部分的問題仍由少部分的專家進行重覆回答,造成少部分專家的負擔。為改善上述缺點,本研究將專家推薦系統結合文件多分類分析以同時推薦平台中的潛在專家與可能答案,以減少過多重複發問的可能。
      本研究將以知識平台Yahoo!知識+為例,提出一個在使用者發問時,同時推薦解答與專家的個人化服務系統,利用文件多分類、文件分群、投票模型與資訊擷取等技術,分析互動識問答的知識平台-Yahoo!奇摩知識+中的問題與專家資訊,並以MRR評估推薦準確度。

    Nowadays, Internet has become an important tool for searching information. Whenever users get problems, they post their questions on the platform and wait for answers from other knowledge providers which are defined as experts in this paper. Experts also shared their knowledge on the platform they are interested in. Some researches regard such platforms as problem solving platforms. However, similar question always be posted repeatedly and knowledge provider may lose their patient to answer the same question. It also faces the information overloading problem. So, how to provide precise answer and consultant to the learner and invite the suitable expert to share their knowledge becomes an urgent problem to be solved.
      Traditional approach used some data mining technique to analyze the learner’s query and try to find out the trustworthy experts or related document to recommend to the learners. However, single solution can’t totally solve the learner’s problem when there are more than one issue discussed in learner’s question and the learner may need someone to consult if the text information doesn’t meet their requirement. Past expert recommendation system providing consultant without considering the learning effect of each user also lead the unbalances the loading of each expert. Many potential experts doesn’t know they are able to provide solution so that only few experts handle all the questions.
      In this paper, we present a novel approach combining multipath classification, voting model, and user learning effect into a personalized answer and expert finding task. The experiment result evaluated by MRR shows that our system performance is better than the Yahoo! Knowledge Plus Search Engine.

    目錄 1. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究流程 5 1.4 研究範圍與限制 6 1.5 論文架構 7 2. 文獻探討 8 2.1 知識分享 8 2.1.1 知識的定義與類型 8 2.1.2 知識分享的意涵 9 2.1.3 虛擬社群的知識分享 10 2.2 資料分類法 10 2.2.1 Support Vector Machine的多分類 11 2.2.2 文件分群應用 12 2.3 推薦系統 12 2.3.1 推薦系統的介紹 13 2.3.2 推薦系統的個人化技術 14 2.3.3 知識推薦系統的應用 16 2.4 問題分析的相關技術 17 2.4.1 文字切割與詞性標定 17 2.4.2 向量空間模型(Vector Space Model, VSM) 18 3. 研究方法 19 3.1 研究架構 19 3.2 資料蒐集與前處理 23 3.2.1 字詞分析與向量轉換 23 3.3 問題分類 25 3.3.1 H-SVM分類器資料選取與模型訓練 26 3.3.2 Bottom-Up Multipath Evaluation(BUME) 27 3.4 問題向量擴張 29 3.5 問題分群 30 3.6 解答評分與推薦 31 3.7 專家評分與推薦 31 3.8 小結 32 4. 系統建置與驗證 34 4.1 系統建置環境 34 4.2 實驗設計 35 4.2.1 實驗資料集 35 4.2.2 實驗參數 36 4.2.3 衡量指標 36 4.2.4 實驗設計 37 5. 結論與未來研究 44 5.1 研究貢獻與結論 44 5.2 未來研究方向 46 參考文獻 48   表目錄 表 2-1 知識創造的轉換過程 9 表 2-2 CKIP部分詞性標記定義 17 表 3-1 參數整理表 20 表 3-2 In-Out Link Table範例 29 表 4-1 系統建置環境 34 表 4-2 FeatureRatio之成對T檢定 38 表 4-3 多分類模型之成對T檢定 39 表 4-4 六種情景與Yahoo!之成對T檢定之比較表 41 表 4-5 在Top-5 & Top-10對於考量答案可信度與否對於MRR影響之檢定 41 表 4-6 三種專家推薦情境與Yahoo!分類知識王的專家平均回答題數以及單一專家被推薦的最大值比較表 43 表 4-7 情境一至三Top-5與Top-10之MRR比較表 ........................................................ 43 表 4-8 Top-5與Top-10專家推薦情境檢定比較表 43   圖目錄 圖 1-1 分類問題的範例 4 圖 1-2 研究流程圖 6 圖 2-1 知識轉換螺旋( Nonaka & Takeuchi,1995) 8 圖 2-2 文件的Dendrogram 12 圖 2-3 以關鍵字”書籍推薦系統”送至Google搜尋結果 14 圖 3-1 系統架構圖 22 圖 3-2 Yahoo!奇摩知識+的問題分類架構圖 26 圖 3-3 問題向量擴張流程圖 29 圖 3-4 “Q_生活法律”之建立範例 30 圖 4-1 系統實作流程圖 35 圖 4-2 FeatureRatio vs 多分類SVM模型之平均正確率 37 圖 4-3 各個Sample所得到的分類模型的分類正確率 38 圖 4-4 六種情境與Yahoo!知識+在之Top-5及Top-10平均 MRR比較圖 40

    Appavu, S., Rajaram, R., Muthupandian, M., Athiappan, G., & Kashmeera, K. S. (2009). Data mining based intelligent analysis of threatening e-mail. Knowledge-Based Systems, 22(5), 392-393.
    Armstrong, A. & Hagel, J. I. (1996). The real value of on-line communities. Harvard Business Review, 74(3), 134-141.
    Blanco-Fernandez, Y., Pazos-Arias, J. J., Gil-Solla, A., Ramos-Cabrer, M., Lopez-Nores, M., Garcia-Duque, J., Fernandez-Vilas, A., Diaz-Redondo, R. P., Bermejo-Munoz, J. (2008). A flexible semantic inference methodology to reason about user preferences in knowledge-based recommender systems. Knowledge-Based Systems, 21(4), 305-320.
    Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111.
    Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4), 547-553.
    Diez, J., del Coz, J. J., & Bahamonde, A. (2010). A semi-dependent decomposition approach to learn hierarchical classifiers. Pattern Recognition, 43(11), 3795-3804.
    Kim, J. W., Lee, K. M., Shaw, M. J., Chang, H. L., Nelson, M., & Easley, R. F. (2006). A preference scoring technique for personalized advertisements on Internet storefronts. Mathematical and Computer Modeling, 44(1-2), 3-15.
    Kim, K. J. & Cho, S. B. (2007). Personalized mining of web documents using link structures and fuzzy concept networks. Applied Soft Computing, 7(1), 398-410.
    Komito, L. (1998). The net as a foraging society: Flexible communities. Information Society, 14(2), 97-106.
    Lai, C. H. & Liu, D. R. (2009). Integrating knowledge flow mining and collaborative filtering to support document recommendation. The Journal of Systems and Software, 82(12), 2023-2037.
    Lee, F. S. L., Vogel, D., & Limayem, M. (2003). Virtual community informatics: A review and research agenda. The Journal of Information Technology Theory and Applications, 5(1), 47-61.

    Leenders, R., van Engelen, J. M. L., & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1-2), 69-92.
    Liang, T. P., Yang, Y. F., Chen, D. N., & Ku, Y. C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412.
    Liao, S. C., Kao, K. F., Liao, I. E., Chen, H. L., & Huang, S. O. (2009). PORE: a personal ontology recommender system for digital libraries. The Electronic Library, 27(3), 496-508.
    Liu, D. R., Lai, C. H., & Huang, C. W. (2008). Document recommendation for knowledge sharing in personal folder environments. The Journal of Systems and Software, 81(8), 1377-1388.
    Liu, D. R., Lai, C. H., & Lee, W. J. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation. Information Sciences, 179(20), 3505-3519.
    Liu, F. & Lee, H. J. (2010). Use of social network information to enhance coolaborative filtering performance. Expert Systems with Applications, 37(7), 4772-4778.
    Macdonald, C. & Ounis, I. (2009). Searching for expertise: Experiments with the Voting Model. The Computer Journal, 52(7), 729-748.
    Malathi, V., Marimuthu, N. S., & Baskar, S. (2010). A comprehensive evaluation of multicategory classification method for fault classification in series compensated transmission line. Neural Computing and Applications, 19(4), 595-600.
    Ryu, S., Ho, S. H., & Han, I. (2003). Knowledge sharing behavior of physicians in hospitals. Expert Systems with Applications, 25(1), 113-122.
    Stamou, S. & Ntoulas, A. (2009). Search personalization through query and page topical analysis. User Model and User-Adapted Interaction, 19, 5-33.
    Middleton, S. E., Shadbolt, N. R., & Roure, D. C. D. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 20(1), 54-88.
    Tseng, S. S. & Weng, J. F. (2010). Finding trustworthy experts to help problem solving on the programming learning forum. Interactive Learning Environments, 18(1), 81-99.
    Vertommen, J., Janssens, F., De Moor, B., & Duflou, J. R. (2008). Multiple-vector user profiles in support of knowledge sharing. Information Sciences, 178(17), 3333-3346.
    Wasko, M. M., & Faraj, S. (2000). "It is what one does": why people participate and help others in electronic communities of practice. Journal of Strategic Information Systems, 9(2-3), 155-173.
    Wu, X. D., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.
    Yimam-Seid, D. & Kobsa, A. (2003). Expert finding systems for organizations: problem and domain analysis and the DEMOIR approach. Journal of Organizational Computing and Electronic Commerce, 13(1), 1-24.
    Zack, M. H. (1999). Managing codified knowledge. Sloan Management Review, 40(4), 45-58.

    下載圖示 校內:2016-07-19公開
    校外:2016-07-19公開
    QR CODE