| 研究生: |
顏以豪 Yen, Yi-Hao |
|---|---|
| 論文名稱: |
以多主題建置個人化專家與解答之推薦系統-以Yahoo知識+為例 Personalized Expert and Answer Recommendation System by Multi-Topic Clustering |
| 指導教授: |
王惠嘉
Wang, Hei-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 專家搜尋 、資訊擷取 、個人化推薦 、社群網路 、投票模型 |
| 外文關鍵詞: | Expert Finding, Information Retrieval, Personalized Recommendation, Social Network, Voting Model |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路的快速發展,網路幾乎成為大家尋找資訊、學習知識的主要管道,許多不同領域、不同目的的社群網路(Social Network)逐漸形成,成為人們尋求與分享資訊的主要平台。許多知識性質的社群網路也隨之興起,以互動式問答的方式,提供學習者與專家之間知識交流的媒介,隨者使用者、發文數、回答數的增加,知識平台的知識量也急速增加,但是也造成了資訊過載的問題,反而導致學習者不易在平台中尋得所需資訊,知識提供者(本研究稱之為”專家”)面對過多重複性的問題也可能失去了回答的意願,且許多有能力回答問題的潛在專家並未主動知道有人需要解決問題。因此,如何提供準確的有效答案與專家,以使專家可有效率的回答問題,成了亟需解決的問題。
為了解決上述問題,過去研究相繼提出文件推薦系統及專家推薦系統以提供發問者所需資訊,在文字解答上著重於分析使用者所下的Query,並加入個人化技術與本體論(Ontology)進一步改善其推薦準確性,在專家推薦上則著重於分析該Query所屬的領域與使用者資訊以推薦相關專家;然而過去的推薦系統多半只提供單一資訊,並未考量發問者可能需要文字解答並與相關專家諮詢互動才足以解決問題。此外,過去研究在資訊的分析上也未考量發問者的問題可能包含多個領域以及每一位平台的使用者本身的學習效應,造成發問者的問題未能完全解決,而潛在專家未被主動告知導致大部分的問題仍由少部分的專家進行重覆回答,造成少部分專家的負擔。為改善上述缺點,本研究將專家推薦系統結合文件多分類分析以同時推薦平台中的潛在專家與可能答案,以減少過多重複發問的可能。
本研究將以知識平台Yahoo!知識+為例,提出一個在使用者發問時,同時推薦解答與專家的個人化服務系統,利用文件多分類、文件分群、投票模型與資訊擷取等技術,分析互動識問答的知識平台-Yahoo!奇摩知識+中的問題與專家資訊,並以MRR評估推薦準確度。
Nowadays, Internet has become an important tool for searching information. Whenever users get problems, they post their questions on the platform and wait for answers from other knowledge providers which are defined as experts in this paper. Experts also shared their knowledge on the platform they are interested in. Some researches regard such platforms as problem solving platforms. However, similar question always be posted repeatedly and knowledge provider may lose their patient to answer the same question. It also faces the information overloading problem. So, how to provide precise answer and consultant to the learner and invite the suitable expert to share their knowledge becomes an urgent problem to be solved.
Traditional approach used some data mining technique to analyze the learner’s query and try to find out the trustworthy experts or related document to recommend to the learners. However, single solution can’t totally solve the learner’s problem when there are more than one issue discussed in learner’s question and the learner may need someone to consult if the text information doesn’t meet their requirement. Past expert recommendation system providing consultant without considering the learning effect of each user also lead the unbalances the loading of each expert. Many potential experts doesn’t know they are able to provide solution so that only few experts handle all the questions.
In this paper, we present a novel approach combining multipath classification, voting model, and user learning effect into a personalized answer and expert finding task. The experiment result evaluated by MRR shows that our system performance is better than the Yahoo! Knowledge Plus Search Engine.
Appavu, S., Rajaram, R., Muthupandian, M., Athiappan, G., & Kashmeera, K. S. (2009). Data mining based intelligent analysis of threatening e-mail. Knowledge-Based Systems, 22(5), 392-393.
Armstrong, A. & Hagel, J. I. (1996). The real value of on-line communities. Harvard Business Review, 74(3), 134-141.
Blanco-Fernandez, Y., Pazos-Arias, J. J., Gil-Solla, A., Ramos-Cabrer, M., Lopez-Nores, M., Garcia-Duque, J., Fernandez-Vilas, A., Diaz-Redondo, R. P., Bermejo-Munoz, J. (2008). A flexible semantic inference methodology to reason about user preferences in knowledge-based recommender systems. Knowledge-Based Systems, 21(4), 305-320.
Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111.
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4), 547-553.
Diez, J., del Coz, J. J., & Bahamonde, A. (2010). A semi-dependent decomposition approach to learn hierarchical classifiers. Pattern Recognition, 43(11), 3795-3804.
Kim, J. W., Lee, K. M., Shaw, M. J., Chang, H. L., Nelson, M., & Easley, R. F. (2006). A preference scoring technique for personalized advertisements on Internet storefronts. Mathematical and Computer Modeling, 44(1-2), 3-15.
Kim, K. J. & Cho, S. B. (2007). Personalized mining of web documents using link structures and fuzzy concept networks. Applied Soft Computing, 7(1), 398-410.
Komito, L. (1998). The net as a foraging society: Flexible communities. Information Society, 14(2), 97-106.
Lai, C. H. & Liu, D. R. (2009). Integrating knowledge flow mining and collaborative filtering to support document recommendation. The Journal of Systems and Software, 82(12), 2023-2037.
Lee, F. S. L., Vogel, D., & Limayem, M. (2003). Virtual community informatics: A review and research agenda. The Journal of Information Technology Theory and Applications, 5(1), 47-61.
Leenders, R., van Engelen, J. M. L., & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1-2), 69-92.
Liang, T. P., Yang, Y. F., Chen, D. N., & Ku, Y. C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412.
Liao, S. C., Kao, K. F., Liao, I. E., Chen, H. L., & Huang, S. O. (2009). PORE: a personal ontology recommender system for digital libraries. The Electronic Library, 27(3), 496-508.
Liu, D. R., Lai, C. H., & Huang, C. W. (2008). Document recommendation for knowledge sharing in personal folder environments. The Journal of Systems and Software, 81(8), 1377-1388.
Liu, D. R., Lai, C. H., & Lee, W. J. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation. Information Sciences, 179(20), 3505-3519.
Liu, F. & Lee, H. J. (2010). Use of social network information to enhance coolaborative filtering performance. Expert Systems with Applications, 37(7), 4772-4778.
Macdonald, C. & Ounis, I. (2009). Searching for expertise: Experiments with the Voting Model. The Computer Journal, 52(7), 729-748.
Malathi, V., Marimuthu, N. S., & Baskar, S. (2010). A comprehensive evaluation of multicategory classification method for fault classification in series compensated transmission line. Neural Computing and Applications, 19(4), 595-600.
Ryu, S., Ho, S. H., & Han, I. (2003). Knowledge sharing behavior of physicians in hospitals. Expert Systems with Applications, 25(1), 113-122.
Stamou, S. & Ntoulas, A. (2009). Search personalization through query and page topical analysis. User Model and User-Adapted Interaction, 19, 5-33.
Middleton, S. E., Shadbolt, N. R., & Roure, D. C. D. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 20(1), 54-88.
Tseng, S. S. & Weng, J. F. (2010). Finding trustworthy experts to help problem solving on the programming learning forum. Interactive Learning Environments, 18(1), 81-99.
Vertommen, J., Janssens, F., De Moor, B., & Duflou, J. R. (2008). Multiple-vector user profiles in support of knowledge sharing. Information Sciences, 178(17), 3333-3346.
Wasko, M. M., & Faraj, S. (2000). "It is what one does": why people participate and help others in electronic communities of practice. Journal of Strategic Information Systems, 9(2-3), 155-173.
Wu, X. D., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.
Yimam-Seid, D. & Kobsa, A. (2003). Expert finding systems for organizations: problem and domain analysis and the DEMOIR approach. Journal of Organizational Computing and Electronic Commerce, 13(1), 1-24.
Zack, M. H. (1999). Managing codified knowledge. Sloan Management Review, 40(4), 45-58.