| 研究生: |
吳俊廷 Wu, Chun-Ting |
|---|---|
| 論文名稱: |
分子自組裝聚苯胺於幾丁聚醣凍凝膠對導電度增加及其在MC3T3-E1增生/分化的效應 The effect of self-doped polyaniline by molecular assembly in chitosan cryogel on the increasing conductivity and MC3T3-E1 proliferation |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 冷凍凝膠 、自組裝聚苯胺 、組織工程 |
| 外文關鍵詞: | cryogel, aza-michael addition, self-assembly poly aniline, tissue engineering |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究的第一部分以不同比例的聚乙二醇二丙烯酸酯/幾丁聚醣(Poly(ethylene glycol) diacrylate/chitosan)作為前驅液,並且透過冷凍乾燥機,來形成組織工程的支架,不同比例的聚乙二醇二丙烯酸酯/幾丁聚醣冷凍凝膠分別名為Chitosan-PEGDA(0.5)、Chitosan-PEGDA(1)、Chitosan-PEGDA(2)、Chitosan-PEGDA(3),其中後面的數字代表著加入聚乙二醇二丙烯酸酯的比例,數字越大代表加入的聚乙二醇二丙烯酸酯越多,用來分析以凍凝膠製程(cryogelation)開發大孔徑且具彈性的新型凍凝膠細胞支架。並且利用掃描式電子顯微鏡(scanning electron microscopy, SEM)可觀察到相連的孔洞結構,孔徑根據不同的比例分布於50-200 μm之間。再以FT-IR圖譜分析顯示兩種成份確定成功交聯於冷凍凝膠高分子壁中,最後再佐以MTT細胞毒性測驗以及萬用壓力測試儀所得到之數據來決定要以Chitosan-PEGDA(0.5)來繼續進行第二部分自組裝聚苯胺的實驗。
在此研究的第二部分,則是以第一階段製造出來的冷凍凝膠為基礎,在高分子壁上自組裝聚苯胺來增加冷凍凝膠的導電度和機械強度。透過加入不同比例的苯胺以及鄰氨基苯磺酸之後以拉曼光譜來確定是否加入之苯胺以及鄰氨基苯磺酸有確實的自組裝於第一階段製備完的冷凍凝膠高分子壁上,之後再藉由萬用壓力測試儀發現機械強度相較於第一階段做出的冷凍凝膠增加了將近50倍,並且由於摻雜度的差異,導致在導電度上加入不同比例的苯胺以及鄰氨基苯磺酸,也會有所不同,造成自組裝之後的冷凍凝膠溝通電子的能力也有明顯的區別,最後再透過MTT細胞毒性測驗來選出對於培養細胞最具有優勢的冷凍凝膠,以作為之後觀察細胞分化使用的冷凍凝膠。未來可再經由加入生長因子以及提供不同的electrical stimulation來刺激細胞分化已培養出類似於天然骨的工程骨骼,進行骨骼缺陷的修復。
The biodegradable shape memory polymers are candidate materials for making biomedical devices and scaffolds for tissue engineering. We had developed a biomimetic scaffold comprising chitosan and Poly(ethylene glycol) diacrylate. Therefore, we prepared macroporous chitosan/PEGDA cryogel scaffolds with elasticity via cryogelation process for cartilage tissue engineering.With different ratio of Poly(ethylene glycol) diacrylate/chitosan feeding in precursor solution, we set up four cryogel samples notation as Chitosan-PEGDA(0.5/1/2/3). The Chitosan-PEGDA(0.5/1/2/3) cryogels contained large, interconnected pores, open-cell strucure was confirmed by scanning electron microscopy (SEM) and Mercury Porosimeter. During stress-strain test for foam, Mechanical properties and porosity of the cryogels are closely related to the amount of PEGDA adding in the precursor solution. Mechanical property is highly positively related to the amount of PEGDA adding in the precursor solution but porosity is highly negatively related to the amount of PEGDA adding in the precursor solution. MTT assay showed that the Chitosan-PEGDA(0.5) has best noncytotoxic property. Therefore, we used Chitosan-PEGDA(0.5) as the template for anilin to self-dope on. As aniline o-aminobenzene sulfonic acid / was self-doped in the chitosan cryogel by molecular assembly, Chitosan-PEGDA(0.5) was coated with electrical nanofiber. With the self-doped polyaniline by molecular assembly in Chitosan-PEGDA(0.5), the conductivity is enhanced to 3×10^(-3) in hydrate state, 6.28×10^(-7) in dehydrate state. MTT assay showed that the self-doped polyaniline by molecular assembly in Chitosan-PEGDA(0.5) could extremely enhance the cell viability to 102.89%.
1. R. Langer and J. P. Vacanti, Science, 1993, 260, 920-926.
2. 楊志明, 組織工程, 九州圖書, 台北市, 2005.
3. T. Dvir, B. P. Timko, D. S. Kohane and R. Langer, Nat Nanotechnol, 2011, 6, 13-22.
4. M. B. Dainiak, I. U. Allan, I. N. Savina, L. Cornelio, E. S. James, S. L. James, S. V. Mikhalovsky, H. Jungvid and I. Y. Galaev, Biomaterials, 2010, 31, 67-76.
5. Y. D. Liu, H. T. Cui, X. L. Zhuang, Y. Wei and X. S. Chen, Acta Biomater., 2014, 10, 5074-5080.
6. P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand and N. Aghdami, Materials Science and Engineering: C, 2016, 63, 131-141.
7. L. Kong, Q. Ao, A. Wang, K. Gong, X. Wang, G. Y. Lu, Y. D. Gong, N. M. Zhao and X. F. Zhang, Journal of Biomaterials Applications, 2007, 22, 223-239.
8. X. Ma, J. Ge, Y. Li, B. Guo and P. X. Ma, RSC Advances, 2014, 4.
9. M. O. Oftadeh, B. Bakhshandeh, M. M. Dehghan and A. Khojasteh, J. Biomed. Mater. Res. Part A, 2018, 106, 1200-1210.
10. H. Stone, S. G. Lin and K. Mequanint, Mater. Sci. Eng. C-Mater. Biol. Appl., 2019, 98, 324-332.
11. A. H. Reddi, Journal of Cellular Biochemistry, 1994, 56, 192-195.
12. M. Radisic, H. Park, T. P. Martens, J. E. Salazar‐Lazaro, W. Geng, Y. Wang, R. Langer, L. E. Freed and G. Vunjak‐Novakovic, Journal of biomedical materials research Part A, 2008, 86, 713-724.
13. H. Park, B. L. Larson, M. D. Guillemette, S. R. Jain, C. Hua, G. C. Engelmayr Jr and L. E. Freed, Biomaterials, 2011, 32, 1856-1864.
14. S. Ahadian, S. Yamada, J. Ramón-Azcón, M. Estili, X. Liang, K. Nakajima, H. Shiku, A. Khademhosseini and T. Matsue, Acta biomaterialia, 2016, 31, 134-143.
15. K. J. Burg, S. Porter and J. F. Kellam, Biomaterials, 2000, 21, 2347-2359.
16. S. Mobini, L. Leppik and J. H. Barker, Biotechniques, 2016, 60, 95-98.
17. B. Ercan and T. J. Webster, International journal of nanomedicine, 2008, 3, 477.
18. V. I. Lozinsky, I. Y. Galaev, F. M. Plieva, I. N. Savina, H. Jungvid and B. Mattiasson, Trends Biotechnol, 2003, 21, 445-451.
19. Y. Liu, N. E. Vrana, P. A. Cahill and G. B. McGuinness, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009, 90B, 492-502.
20. N. E. Vrana, P. A. Cahill and G. B. McGuinness, Journal of Biomedical Materials Research Part A, 2010, 94A, 1080-1090.
21. K. Bloch, V. I. Lozinsky, I. Y. Galaev, K. Yavriyanz, M. Vorobeychik, D. Azarov, L. G. Damshkaln, B. Mattiasson and P. Vardi, Journal of Biomedical Materials Research Part A, 2005, 75A, 802-809.
22. N. Kathuria, A. Tripathi, K. K. Kar and A. Kumar, Acta Biomaterialia, 2009, 5, 406-418.
23. A. Tripathi, N. Kathuria and A. Kumar, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009, 90, 680-694.
24. A. Tripathi, T. Vishnoi, D. Singh and A. Kumar, Macromol Biosci, 2013, 13, 838-850.
25. M. Jurga, M. B. Dainiak, A. Sarnowska, A. Jablonska, A. Tripathi, F. M. Plieva, I. N. Savina, L. Strojek, H. Jungvid, A. Kumar, B. Lukomska, K. Domanska-Janik, N. Forraz and C. P. McGuckin, Biomaterials, 2011, 32, 3423-3434.
26. R. Balint, N. J. Cassidy and S. H. Cartmell, Tissue Eng Part B Rev, 2013, 19, 48-57.
27. N. Sykaras and L. A. Opperman, Journal of oral science, 2003, 45, 57-73.
28. M. Raman, W. Chen and M. Cobb, Oncogene, 2007, 26, 3100.
29. C. Ge, G. Xiao, D. Jiang and R. T. Franceschi, The Journal of cell biology, 2007, 176, 709-718.
30. Y.-L. Hsu, J.-K. Chang, C.-H. Tsai, T.-T. C. Chien and P.-L. Kuo, Biochemical pharmacology, 2007, 73, 504-514.
31. A. Nohe, E. Keating, P. Knaus and N. O. Petersen, Cellular signalling, 2004, 16, 291-299.
32. A. Toker and L. C. Cantley, Nature, 1997, 387, 673.
33. N. Ghosh-Choudhury, C. C. Mandal and G. G. Choudhury, Journal of Biological Chemistry, 2007, 282, 4983-4993.
34. G. J. Anderson, and Deepak Darshan., Nature chemical biology, 2008.
35. H. M. Zhuang, W. Wang, R. M. Seldes, A. D. Tahernia, H. J. Fan and C. T. Brighton, Biochem. Biophys. Res. Commun., 1997, 237, 225-229.
36. Y. Wang, H. Cui, Z. Wu, N. Wu, Z. Wang, X. Chen, Y. Wei and P. Zhang, PLoS One, 2016, 11, e0154924.
37. Q. Q. Yao, H. X. Liu, X. Lin, L. W. Ma, X. Zheng, Y. Liu, P. P. Huang, S. S. Yu, W. J. Zhang, M. M. Lin, L. M. Dai and Y. Liu, J. Biomed. Nanotechnol., 2019, 15, 602-611.
38. A. M. Deliormanli and H. Atmaca, Appl. Biochem. Biotechnol., 2018, 186, 972-989.
39. K. M. Molapo, P. M. Ndangili, R. F. Ajayi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker and E. I. Iwuoha, International Journal of Electrochemical Science, 2012, 7, 11859-11875.
40. A. Epstein, J. Ginder, F. Zuo, H.-S. Woo, D. Tanner, A. Richter, M. Angelopoulos, W.-S. Huang and A. MacDiarmid, Synthetic Metals, 1987, 21, 63-70.
41. D. M. Mohilner, R. N. Adams and W. J. Argersinger, Journal of the American Chemical Society, 1962, 84, 3618-3622.
42. F. Masdarolomoor, 2006.
43. B. L. Guo, J. Qu, X. Zhao and M. Y. Zhang, Acta Biomaterialia, 2019, 84, 180-193.
44. P. Humpolicek, K. A. Radaszkiewicz, Z. Capakova, J. Pachernik, P. Bober, V. Kasparkova, P. Rejmontova, M. Lehocky, P. Ponizil and J. Stejskal, Scientific Reports, 2018, 8.
45. P. Srisuk, F. V. Berti, L. P. da Silva, A. P. Marques, R. L. Reis and V. M. Correlo, Acs Biomaterials Science & Engineering, 2018, 4, 1779-1787.
46. P. Zarrintaj, B. Bakhshandeh, M. R. Saeb, F. Sefat, I. Rezaeian, M. R. Ganjali, S. Ramakrishna and M. Mozafari, Acta Biomaterialia, 2018, 72, 16-34.
47. B. L. Guo and P. X. Ma, Biomacromolecules, 2018, 19, 1764-1782.
48. X. L. Guo, H. X. Xu, Q. D. He, Y. X. Yu, X. F. Ming, F. R. Zheng, X. B. Wang, Z. J. Huang, M. Zhao and P. H. Xu, Journal of Bioactive and Compatible Polymers, 2019, 34, 190-208.
49. B. K. Shrestha, S. Shrestha, E. R. Baral, J. Y. Lee, B. S. Kim, C. H. Park and C. S. Kim, Chemical Engineering Journal, 2019, 360, 701-713.
50. S. Wang, F. Liu, C. Gao, T. Wan, L. Wang, L. Wang and L. Wang, Chemical Engineering Journal, 2019, 370, 322-329.
51. H. Wu, M. La, J. Li, Y. Han, Y. Feng, Q. Peng and C. Hao, Composite Interfaces, 2018, 26, 659-677.
52. C.-H. Yang, Y.-K. Chih, H.-E. Cheng and C.-H. Chen, Polymer, 2005, 46, 10688-10698.
校內:2024-12-31公開