簡易檢索 / 詳目顯示

研究生: 諾薇塔
Dewi-Cahyanti, Novita
論文名稱: 盛鋼桶燃燒合成熱間修補材料之開發
Development of Hot Repairing Materials Based on Combustion Synthesis for Ladle Refractory Linings
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 132
外文關鍵詞: hot repiring technique, ladle lining, SHS, combustion, refractories
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究主要是探討以燃燒合成法 (SHS) 製備熔煉爐體的耐高溫修補材料。藉由實驗參數的改變,如燃料、氧化劑及添加劑等,吾人已成功的開發出以SHS技術製備氧化鐵、氧化鉻以及非氧化物系列等三種修補材料的合成方法; 另一方面,吾人亦以非氧化物系統進行其應用性的探討,經由實驗的結果發現:當組成條件為 Al*/Al 莫爾比為1: 0.1,且鋁粉有經過五個小時的表面處理時,所製備的修補材料具有較佳的耐溫特性, 經進一步分析其機械強度為 0.54 MPa、 rebound loss為25.01 wt%、molten steel的腐蝕速率為1.121x10-3 mm/minute而molten slag 的腐蝕速率為 41.167x10-3 mm/minute。

    ABSTRACT

    This project is aimed at developing hot repairing materials based on combustion synthesis for ladle side-wall refractory repairing. The formulated hot repairing materials thus, were tested via simulated experiments using a furnace to examine their suitability for practical applications. In the beginning, the SHS hot repairing materials were formulated to compose of four major constituents: fuel (i.e., the desired metal particles), oxidizer (intentionally added metal oxides or naturally available O2 in air), framework (served as structure frame) and additives (for modifying combustion or product properties).

    For practical application, non-Oxide system was simulated. In advanced, this system shows better refractoriness performance by applying Aluminum surface treatment issue. Different Aluminum preheating time duration and different combination of Aluminum treated (Al*) to Aluminum non-treated (Al) mol ratio also affected on the performance of combustion product. The best composition found is using 1:0.1 of Al* to Al mol ratio and 5 hours Aluminum preheating time duration. Its combustion product showed better bonding strength, lower weight percent rebound loss of material gunned, and smaller molten steel and slag corrosion rate were also showed by that best composition, which are respectively 0.54 MPa of MOR, 25.01 wt % of rebound loss, 1.121x10-3 mm/minute of molten steel corrosion rate and 41.167x10-3 mm/minute of molten slag corrosion.

    TABLE OF CONTENTS ABSTRACT in Chinese (摘要) iii ABSTRACT iv ACKNOWLEDMENT v TABLE OF CONTENTS vi LIST OF TABLES x LIST OF FIGURES xii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 REFRACTORIES 3 2.1 Ladle Application of Refractories…………………………….……………… 4 2.2 Magnesium Aluminate Spinel………………………………..………………. 8 2.2.1 Structure……………………………………………….……………... 8 2.2.2 Physical Properties………………………………….………………... 8 2.2.3 Alumina-Rich Spinel……………………………….………………... 9 CHAPTER 3 VARIOUS REPAIRING TECHNIQUES 13 3.1 Casting Block………………………………………….……………………... 13 3.2 Tundish Board………………………………………….……………………. 15 3.3 Spraying/Gunning…………………………………….…………………….... 18 CHAPTER 4 SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS 22 4.1 Thermodynamic Consideration…………………………………………….... 32 4.2 Chemical Classes of SHS Products………………………….………………. 34 4.3 Practical Implementation of SHS…………………………….……………… 37 4.3.1 SHS Powder…………………………………………………….……. 37 4.3.2 Ceramic Materials and Items (net-shape production)………..……… 38 4.3.3 Tungsten-Free Hard Alloys…………………………………………. 39 4.3.4 Cast Materials and Items……………………………………………. 40 CHAPTER 5 RESEARCH PRINCIPALS AND CONSTRAIN INFORMATIONS 42 5.1 Research Policy, Methods and Steps………………………………………… 42 5.1.1 Background Infromations…………………………………………… 42 5.1.2 Requirements to the SHS Hot Repairing Materials…………………. 42 5.1.2.1 Self Ignition……………………………………………….. 42 5.1.2.2 Self Densification and Strong Bonding with the Linings…. 43 5.1.2.3 Properties Requirements…………………………………… 43 5.2 Research Planning…………………………………………………………… 44 5.2.1 Formulation of the SHS Hot Repairing Materials and Study on Their SHS Reaction Phenomena…………………………………………… 44 5.2.1.1 Basic Components of the Hot Repairing Materials………... 44 5.2.1.2 Important Problems to be Studied…………………………. 45 5.2.2 Study on the Performance of the Formulated Hot Repairing Materials Via Simulated Experiments……………………………….. 45 CHAPTER 6 EXPERIMENTAL SECTION 47 6.1 Materials……………………………………………………………………... 47 6.1.1 Iron Oxide System…………………………………………………… 47 6.1.2 Chrome Oxide System……………………...……………………….. 48 6.1.3 Non-Oxide System…………………………………………………... 48 6.2 Experimental Procedure……………………………………………………... 48 6.2.1 Preliminary Porosity/Densification, Ignition and Combustion Measurement………………………………………………………… 48 6.2.2 Surface Treatment…………………………………………………… 52 6.3 Characterization…………………………………………………………………… 55 6.3.1 Ignition and Combustion Temperature Measurement………………. 55 6.3.2 Physical Properties…………………………………………………... 57 6.3.2.1 Porosity……………………………………………………. 57 6.3.2.2 Bonding Strength………………………………………….. 58 6.3.2.3 Rebound Loss……………………………………………… 61 6.3.2.4 Molten Steel and Slag Resistance…………………………. 63 6.3.3 Chemical Properties…………………………………………………. 63 6.3.3.1 X-Ray Diffraction…………………...…………………….. 64 6.3.4 Microstructure……………………………………………………….. 64 6.3.4.1 Scanning Electron Microscope…………...……………….. 64 CHAPTER 7 RESULT AND DISCUSSION 66 7.1 Formulation of the SHS Hot Repairing Materials for Ladle………………… 66 7.2 Ignition and Combustion Temperature Measurements……………………… 67 7.2.1 Iron Oxide System…………………………………………………… 67 7.2.1.1 Ignition and Combustion Temperature……………………. 67 7.2.1.2 Effect of Mg Content………………………………………. 74 7.2.1.3 Effect of Framework Content……………………………… 74 7.2.2 Chromium Oxide System……………………………………………. 74 7.2.2.1 Ignition and Combustion Temperature…………………….. 74 7.2.2.2 Effect of Fuel Content……………………………………... 75 7.2.3 Non-Oxide System…………………………………………………... 79 7.2.3.1 Ignition and Combustion Temperature……………………. 79 7.2.3.2 Effect of Framework Content on Ignition Temperature…… 79 7.2.3.3 Effect of Framework on Maximum Combustion Temperature………………………………………………... 79 7.3 Porosity Measurement………………………………………………………. 81 7.4 Microstructure Observation…………………………………………………. 81 7.5 Preliminary Surface Treatment……………………………………………… 85 7.5.1 Surface Treatment Issue……………………………………………... 85 7.5.2 Effect of Different Slurry Water Content……………………………. 87 7.5.3 Effect of Different Binder System…………………………………… 93 7.6 Surface Treatment…………………………………………………………… 98 7.6.1 Al Preheating Treatment…………………………………………….. 98 7.6.2 Al2O3 Addition……………………………………………………… 103 7.6.2.1 Effect of Different Al2O3 Amount Added…………………. 103 7.6.2.2 Effect of Different Preheating Time……………………….. 104 7.6.3 Combination of Al Treated (Al*) and Al non-Treated (Al)…………. 110 7.6.3.1 Effect of Different Preheating Time……………………….. 110 7.6.3.2 Effect of Different Al Treated (Al*) to Al non-Treated (Al) Ratio………………………………………………………... 111 7.6.4 Microstructure Observation………………………………………….. 115 7.6.5 Rebound Loss Analysis……………………………………………… 121 7.6.6 Molten Steel and Molten Slag Analysis……………………………... 122 CHAPTER 8 CONCLUSIONS 126 REFERENCES 128

    References:

    1. C.R. Lynham: Teapot Ladle and Method of Use. US Patent No. 4330107, May 18, 1982.
    2. W.K. Brown, R.E. Gavran, T.W. Lewis: Lined Ladles, Lining Therefore, and Method of Forming the Same. US Patent No. 5318277, June 7, 1994.
    3. P.L. Ivarsson, IGA. Blom, L.G. Berg: Refractory Lining and Process for Its Manufacture. US Patent No. 4617280, October 14, 1986.
    4. Y. Nishikawa, H. Takahashi: Method for Hot Repairing the Inside of a Furnace. US Patent No. 4436678. June 23, 1981.
    5. E. Brichard, M. Jaupain, E. Plumat, P. Deschepper: Method of Forming Refractory Masses. US Patent No. 3684560, Augustus 15, 1972.
    6. E. Brichard, M. Jaupain, E. Plumat, P. Deschepper: Apparatus for Forming Refractory Masses. US Patent No. 3800983, April 2, 1974.
    7. A.G. Merzhanov and I.P. Borovinskaya: A new Class of Combustion Process. Combust. Sci. Technol. 10, 195 (1975).
    8. K. Sugita: Refractories for Iron and Steelmaking. Chijin-Shokan Co., Ltd., Tokyo, p.275 (1995).
    9. Nshi et al.: Taikabutsu, 36 [3] 172 (1984) in Y. Shinohara: Refractories Handbook. The Technical Association of Refractories, Japan. 1998.
    10. N. Hiraga, H. Nakanisi, and E. Furuno: Improving Refractories for Ladles with Refining Steel. Taikabutsu, 46 [2], 67 (1994).
    11. Kato et al.: Taikabutsu, 48 [3] 142 (1996) in Y. Shinohara: Refractories Handbook. The Technical Association of Refractories, Japan. 1998 .
    12. Yaoi et al.: Taikabutsu, 45 [9] 521 (1993) in Y. Shinohara: Refractories Handbook. The Technical Association of Refractories, Japan. 1998.
    13. P. Bartha: Spinell und Spinellhaltige Feuerfeste Werkstoffe in Berichtsband Feuerfesttechnik – Werkstoffe, Rohstoffe, Neue Entwicklungen, Verlag Stahleisen mbH, Dsseldorf. 113-133 (1984).
    14. M. C. Franken, R. Siebring and T. W. M. de Wit: New refractory Lining for Steel Ladle BOS no. 2 Corus Ijmuiden, Unitecr 2001.
    15. S. Itose, M. Narkashima, T. Isobe and I. Shimizu: Improvement in the Durability of Alumina-Spinel Steel Ladle Castable Containing Spinel Fine Powder. Journal of the Technical Association of Refractories, Japan, 22 [1], 26-30 (2002).
    16. A.G. Merzhanov and I.P. Borovinskaya: The Chemistry of Self-Propagating High-Temperature Synthesis. Combust. J. Mater. Chem. 14, 1779- 1786 (2004).
    17. J.F. Crider: Self-Propagating High-Temperature Synthesis: a Soviet Method for Producing Ceramic Materials. Ceram. Eng. Sci. Proc. 3, 519 (1982).
    18. S.L. Chung, W.L. Yu and C.N. Lin: A Self-Propagating High Temperature Synthesis Method for Synthesis of AlN Powder. J. Mater. Res. 14, 1928 (1999).
    19. Z.A. Munir: Synthesis of High Temperature Materials by Self-Propagating Combustion Methods. Ceram. Bull. 6, 342 (1988).
    20. M. Constantino and C. Firpo: High Pressure Combustion Synthesis of Aluminum Nitride. J. Mater. Res. 6, 2397 (1991).
    21. A.G. Merzhanov: Self-Propagating High-Temperature Synthesis (SHS). Institute of Structural Macrokinetics and Materials Science.
    22. O.N. Carlson, Gordon and Breach, New York. 1, (187-2061973).
    23. L.L. Wang, Z.A. Munir, and Y.M. Maximov: Review Thermit Reactions: Their Utilization in The Synthesis and Processing of Materials. Journal of Materials Science. 28, 3693-3708 (1993).
    24. A. G. Merzhanov, in Particulate Materials and Processes: Advances in Powder Metallurgy, Metal Powder Industries Federation Publishers, Princeton, NJ, 1992, p. 341.
    25. A. G. Merzhanov and G. G. Karyuk, I.P. Brovinskaya, et al.: Titanium Carbide Produced by Self-Propagating High-Temperature Synthesis - Valuable Abrasive Material. Poroshk. Metall.. 10, 50–59 (1981).
    26. A. G. Merzhanov: The Chemistry of Advanced Materials, C. N.R. Rao, ed., Blackwell Science Publishers, Oxford, (1992) p.19.
    27. I. P Borovinskaya, V. A. Poklad, O. G. Ospennikova, V. I. Yukhvid, V. V. Deev and V. A. Gorshkov, Joint Report ISMAN–SALYUT, Chernogolovka–Moscow, 2003.
    28. I. P. Borovinskaya: Self-Propagating High-Temperature Synthesis: Theory and Practice, A. E. Sytschev, ed., Territoriya, Chernogolovka. (2001) p.432.
    29. A. G. Merzhanov: Combustion Process that Synthesis Materials. J. Mater. Proc. Technol. 56, 222–241 (1996).
    30. A. G. Merzhanov: Combustion and Plasma Synthesis of High- Temperature Materials, Z. A. Munir and J. B. Holt, ed., VCH, New York. (1990) p.1.
    31. I. P. Borovinskaya, V. I. Ratnikov and G. A. Vishnyakova: Some Chemical Aspects of Force SHS Compactization. Inzh.-Fiz. Zh. 63, 517 (1992).
    32. V. L. Kvanin, V. A. Gorovoi, N. T. Balikhina, I. P. Borovinskaya and A. G. Merzhanov, Int. J. SHS. 3, 56 (1993).
    33. I. P. Borovinskaya and A. N. Pityulin: Self-Propagating Hightemperature Synthesis of Materials, A. A. Borisov, L. de Luca and A. Merzhanov, ed., Taylor & Francis, New York. (2002) 270.
    34. V. L. Kvanin, N. T. Balikhina and I. P. Borovinskaya. Proceedings of the VII International Symposium on SHS, Abstract Book, 2003.
    35. V. I. Yukhvid, Nauka Proizvod. 8, 52 (1998) in A.G. Merzhanov and I.P. Borovinskaya: The Chemistry of Self-Propagating High-Temperature Synthesis. Combust. J. Mater. Chem. 14, 1779- 1786 (2004).
    36. A. G. Merzhanov and V. I. Yukhvid, in Proceedings of the First US-Japanese Workshop on Combustion Synthesis, 1990, Ibaraki, Japan, National Research Institute for Metals, Y. Kaieda and J. B. Holt, ed., Japan. (1990) p.1.
    37. V. I. Yukhvid: Self-Propagating High-Temperature Synthesis: Theory and Practice, A. E. Sytschev, ed., Territoriya, Chernogolovka. (2001) p.252.
    38. O. Odawara: Method for Providing Ceramic Lining to a Hollow Body by Thermit Reaction. US Patent No. 4363832, December 14, 1982.
    39. A. G. Merzhanov: SHS on the Pathway to Industrialization. Int. J. SHS. 2001, 10 (2), 237–257.
    40. K. Chen, C. Ge, J. Li and W. Cao: Microstructure and Thermokinetics Analysis of Combustion Synthesized AlN. J. Mater. Res. 14, 1944 (1999).
    41. S.M. Bradshaw and J.L. Spicer: Combustion Synthesis of Aluminum Nitride Particles and Whiskers. J. Am. Ceram. Soc. 82, 2293 (1999).
    42. R. Sarkar and G. Banerjee: Effect of Compositional Vatiation and Fineness on the Densification of MgO-Al2O3 Compacts. Journal of the Europian Ceramic Society. 19, 2893-2899 (1999).
    43. S.D. Dunmead, W.G. Moore, K.E. Howard and K.C. Morse: Aluminum Nitride, Aluminum Nitride Containing Solid Solutions and Aluminum Nitride Composites Prepared by Combustion Synthesis. U.S. Patent No. 5649278, July 15, 1997.
    44. Z.Y. Deng, J.L. Shi, Y.F. Zhang, T.R. Lai, and J.K. Guo: Creep and Creep-Recovery Behavior in Silicon-Carbide-Particle-Reinforced Alumina. J. Am. Ceram. Soc. 82, 944 (1999).

    下載圖示 校內:2012-07-06公開
    校外:2012-07-06公開
    QR CODE