簡易檢索 / 詳目顯示

研究生: 張振武
Chang, Chen-Wu
論文名稱: 以隨機區塊排列建構的半循環式低密度同位元檢查碼
Quasi-Cyclic Low-Density Parity-Check Codes Constructed by Random Block Permutation
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 54
中文關鍵詞: 線性方塊碼半循環式低密度同位元檢查碼
外文關鍵詞: Linear Block Codes, Quasi-Cyclic Low-Density Parity-Check Codes
相關次數: 點閱:40下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   低密度同位元檢查碼是一種線性方塊碼。其在大部分的資料傳輸環境上或儲存器通道上都可以貼近省農限制。近幾年來,許多低密度同位元檢查碼的研究專注於設計一個具有較大周長的同位檢查矩陣以得到更低的錯誤機率,或是探討如何在編解碼上更有效率。本篇論文基於結構性建構的半循環式低密度同位元檢查碼,提出一種隨機區塊排列建構的同位檢查矩陣編碼方式。對於較長的碼,由於同位檢查矩陣的隨機性使然,隨機建構的同位檢查矩陣會優於半循環式低密度同位元檢查碼。本篇論文以半循環式低密度同位元檢查碼為基礎,提出一種以隨機區塊排列的同位元檢查矩陣。我們發現我們提出的方法尤其在高訊號雜訊比時會優於傳統的半循環式低密度同位元檢查碼。但由於隨機性的不足使然,在純高斯雜訊環境下其效能仍比隨機性建構式來的差。在衰落通道環境下,隨機區塊排列之效能甚至很接近隨機建構的方法。很幸運地,隨機區塊排列的方法並不會將原本半循環式的結構破壞殆盡。

     Low-density parity-check (LDPC) codes are a class of linear block codes. It provides near Shannon limit performance on a large collection of data transmission and storage channels. Recent these years, a lot of researches focus on the performance improvement by design a good code which has large girth, or focus on efficient encoding/decoding schemes. For long code length, because of the ensemble of the parity-check matrix, random construction outperforms quasi-cyclic (QC) LDPC. In this thesis, base on QCLDPC, we propose another code construction by using random block permutation. We observed that the proposed scheme outperforms QCLDPC, especially in high SNR. But it is worse than random construction in AWGN channel due to the less randomness. It is also superior to QCLDPC under the fading channel, and even approaches random constructed LDPC codes. Fortunately, the random block permutation shouldn’t break the structure of the QCLDPC code largely.

    Chinese Abstract              Ⅰ English Abstract              Ⅱ Acknowledgements              Ⅲ Contents                       Ⅳ List of Figures                    Ⅵ Chapter 1 Introduction                1 Chapter 2 Low Density Parity Check Codes       3      2.1 Introduction to Gallager LDPC codes and        Quasi-Cyclic (QC) LDPC Codes       3        2.1.1 Gallager LDPC Codes        4        2.1.2 QCLDPC Codes            7      2.2 Encoding of LDPC Codes          8      2.3 Decoding of LDPC Codes          9        2.3.1 Iterative Decoding Algorithms   9        2.3.2 Log-Domain Message-Passing           Algorithm (MPA)          16        2.3.3 Min-Sum Decoder          19        2.3.4 Min-Sum-Plus-Correction-Factor           Decoder              21 2.4 Performance of BPSK-modulated LDPC Codes        with AWGN Channel            23 Chapter 3  Performance of BPSK-modulated LDPC Codes       with Correlated and Uncorrelated Rayleigh       Fading Channel               29      3.1 Performance of QCLDPC Codes with Perfect        Channel State Information (CSI)     29      3.2 Channel Estimation by Using Time-Domain        Least Squares Fitting          36 Chapter 4  The Proposed Scheme 40 Chapter 5 Simulation Results 44 Chapter 6  Conclusions and Future Works 49      6.1 Conclusions               49      6.2 Future Works              50 Bibliography                     53

    [1] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, MA, 1963.
    [2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Information Theory, pp. 533-547, Sept. 1981.
    [3] Marc P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices,” IEEE Trans. Information Theory, VOL. 50, NO. 8, pp. 1788-1793, Aug. 2004.
    [4] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” in Proc. ISTA, Ambleside, England, 2001.
    [5] Toshihiko Okamura, “Design LDPC Codes Using Cyclic Shifts,” ISIT 2003, Yokohama, Japan, p. 151, June 29-July 4, 2003.
    [6] R. M. Tanner et. al., ”LDPC Block and Convolutional Codes Based on Circulant Matrices,” IEEE Trans. Information Theory, VOL. 50, NO. 12, pp. 2966-2984, Dec. 2004.
    [7] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linkoping University, Sweden, 1996.
    [8] Jon-Lark Kim et. al., ”Explicit Construction of Families of LDPC Codes With No 4-Cycles,” IEEE Trans. Information Theory, VOL. 50, NO. 10, pp. 2378-2388, Oct. 2004.
    [9] Kyeongcheol Yang, Tor Helleseth, “On the Minimum Distance of Array Codes as LDPC Codes,” IEEE Trans. Information Theory, VOL. 49, NO. 12, pp. 3268-3271, Dec. 2003.
    [10] D. J. C. MacKay and M. C. Davey, Evalution of Gallager for short block length and high rate applications, VOL. 123, ch. 5, pp. 113-130, IMA Volumes in Mathematics and its Applications, 2001.
    [11] Yunxin Li and Xiaojing Huang, “The Simulation of Independent Rayleigh Faders,” IEEE Trans. Communications, VOL. 50, NO. 9, pp. 1503-1514, Sep. 2002.
    [12] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronics Letters, VOL. 32, pp. 1645-1646, July 12, 1996.
    [13] Xiao-Yu Hu et. al., ”Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes,” Proc. 2001 IEEE GlobeCom Conf., pp. 1036-1036E, Nov. 2001.
    [14] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE Information Theory, pp. 429-445, March 1996.
    [15] Jilei Hou, Paul H. Siegel, and Laurence B. Milstein, “Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels,” IEEE J. Selected Areas Commun., VOL. 19, NO. 5, pp. 924-934, May 2001.
    [16] Ming-Xian Chang and Y. T Su, “Model-Based Channel Estimation for Equalizing OFDM Signals,” IEEE Trans. Communication, VOL. 50, pp. 504-544, Apr. 2002.
    [17] Siavash M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE J. Selected Areas Commun., VOL. 16, NO. 8, Oct. 1998.

    下載圖示 校內:2007-06-29公開
    校外:2007-06-29公開
    QR CODE