研究生: |
郭欣慈 Kuo, Hsin-Tzu |
---|---|
論文名稱: |
A群鏈球菌perR基因對DNase之調控 Regulation of DNase by the perR gene of group A streptococcus |
指導教授: |
吳俊忠
Wu, Jiunn-Jong |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | A群鏈球菌 |
外文關鍵詞: | group A streptococcus, PerR, DNase |
相關次數: | 點閱:62 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化膿性鏈球菌(Streptococcus pyogenes)又稱作A群鏈球菌(group A streptococcus,簡稱GAS)為感染人類之致病菌,造成輕微的表皮感染到嚴重深層組織的侵入性疾病。PerR (peroxide stress response regulator) 為GAS之調控因子,已知和GAS適應氧化壓力反應及鐵的平衡有關,而perR突變株對於抵抗多形核白血球的清除能力比野生株低。利用二維電泳分析,發現perR突變株與野生株有19個分泌型蛋白質表現具有顯著的差異。其中一蛋白質為mitogenic factor 3 (Mf3),為已知的DNase。本研究主要探討PerR對於Mf3及其他DNase的調控以及此調控在GAS致病機轉中的角色。為了瞭解mf3的毒力,我們進一步構築mf3的突變株,發現其在人類全血中的存活能力較低,且在小鼠感染中的毒力也會下降。mf3的表現和生長曲線呈正相關,但perR突變株mf3的表現量會多於野生株。進一步分析PerR對GAS三個DNase基因(sda1,spd及mf3)的調控。在一般培養液培養下,sda1的表現量在perR突變株及野生株並沒有差異,但spd在培養8小時時,perR突變株的表現量增加。在硫酸亞鐵的刺激下,PerR並不會對三個DNase基因的表現造成影響。但在過氧化氫的刺激下,野生株的sda1會被誘發,且隨劑量的增加而有遞增的表現,而perR突變株中表現量卻降低。反之,在過氧化氫的刺激下,mf3及spd在野生株中則會隨著劑量增加而表現下降。此結果顯示在氧化壓力下PerR 為sda1表現必需的調控因子。在已知的三個DNase基因中,sda1具有較強DNA 分解能力以及和GAS致病力最為相關。Sda1已被報導可分解neutrophil extracellular traps (NETs)上的DNA以逃脫免疫攻擊。將GAS和多核型白血球培養後,發現野生株感染後NETs的數目比突變株少,推測為在氧化壓力下,野生株sda1被誘發表現而增加分解NETs的能力。這些結果指出PerR為一個雙功能性的調控因子,在不同環境刺激下影響DNase基因的表現進而影響其功能,這在GAS的致病機轉中扮演一個重要的角色。
Streptococcus pyogenes (group Astreptococcus, GAS) is a bacterial pathogen restricted to human, and causes diseases ranging from superficial to deep tissue infection. In order to defend oxidative stress produced from immune cells, the regulator PerR (peroxide stress response regulator)is known to playa role in the adaptive response. PerR is also involved in regulation of iron hemostasis and is necessary for virulence of GAS. Our results showed that the perR mutant decreased resistance to PMN killing. In addition, 2-D electrophoresis analysis showed19 spots were either up regulated or down regulated expression in the perR mutant. Among them, a DNase (mitogenic factor 3, MF3) was identified and mutant was also constructed.The aimsof my project were to understand the roles of PerR in regulation of Mf3 and other DNases of GAS, and the effects of this regulation network to GAS pathogenesis. The mf3 mutant showed the decrease survival rate than the wild-typein human whole blood bactericidal assayand the attenuated virulence in mice infection. RT-PCR and real-time PCR showed increased mf3 expression in theperR mutant. Electrophoretic mobility shift assays showed PerR directly binds to Per boxes in the mf3 promoter region. In order to understand how PerR regulated DNase activity, three DNases genes (sda1,spd, and mf3) were further analyzed in wild-type and perR mutant strains under different conditions including ferrous ion and hydrogen peroxide treatment. The results showed no effect on sda1,spd, and mf3 expressionin wild-type strain under the ferrous ion treatments, while spd and mf3 expression were increased in the mutant. sda1expression was increased in wild-type strain, while mf3 and spd expressionswere decreased after hydrogen peroxide treatments.These results indicated that sda1 expression under oxidative stress is PerR-dependent. Sda1 has been found it degraded DNA of neutrophil extracellular traps (NETs) and allowed GAS to escape from phagocytes killing. In fluorescence images of NETs, less NETs were presented in wild-type thanperR mutant supporting that sda1 was only induced in wild-type strain to degrade the NET structure. In conclusion, PerR acts as a bifunctional regulator to regulate DNase gene in different environmental conditions which may play an important role in the GAS pathogenesis.
Akesson, P., L. Moritz, M. Truedsson, B. Christensson & U. von Pawel-Rammingen, (2006) IdeS, a highly specific immunoglobulin G (IgG)-cleaving enzyme from Streptococcus pyogenes, is inhibited by specific IgG antibodies generated during infection. Infect Immun 74: 497-503.
Andersen, B. R. & J. L. Duncan, (1980) Activation of human neutrophil metabolism by streptolysin O. J Infect Dis 141: 680-685.
Aziz, R. K., S. A. Ismail, H. Park & M. Kotb, (2004) Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol Microbiol 54: 184-197.
Bates, C. S., C. Toukoki, M. N. Neely & Z. Eichenbaum, (2005) Characterization of MtsR, a new metal regulator in group A Streptococcus, involved in iron acquisition and virulence. Infect Immun 73: 5743-5753.
Bauer, S. & H. Tapper, (2004) Membrane retrieval in neutrophils during phagocytosis: inhibition by M protein-expressing S. pyogenes bacteria. J Leukoc Biol 76: 1142-1150.
Berge, A., B. M. Kihlberg, A. G. Sjoholm & L. Bjorck, (1997) Streptococcal protein H forms soluble complement-activating complexes with IgG, but inhibits complement activation by IgG-coated targets. J Biol Chem 272: 20774-20781.
Berggard, K., E. Johnsson, E. Morfeldt, J. Persson, M. Stalhammar-Carlemalm & G. Lindahl, (2001) Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol 42: 539-551.
Braun, M. A., D. Gerlach, U. F. Hartwig, J. H. Ozegowski, F. Romagne, S. Carrel, W. Kohler & B. Fleischer, (1993) Stimulation of human T cells by streptococcal "superantigen" erythrogenic toxins (scarlet fever toxins). J Immunol150: 2457-2466.
Brenot, A., K. Y. King & M. G. Caparon, (2005) The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol Microbiol 55: 221-234.
Brenot, A., K. Y. King, B. Janowiak, O. Griffith & M. G. Caparon, (2004) Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun 72: 408-413.
Brenot, A., B. F. Weston & M. G. Caparon, (2007) A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol Microbiol 63: 1185-1196.
Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch & A. Zychlinsky, (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532-1535.
Buchanan, J. T., A. J. Simpson, R. K. Aziz, G. Y. Liu, S. A. Kristian, M. Kotb, J. Feramisco & V. Nizet, (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16: 396-400.
Carapetis, J. R., A. C. Steer, E. K. Mulholland & M. Weber, (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694.
Chang, A., A. Khemlani, H. Kang & T. Proft, (2011) Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol Microbiol 79: 1629-1642.
Chaussee, M. S., G. L. Sylva, D. E. Sturdevant, L. M. Smoot, M. R. Graham, R. O. Watson & J. M. Musser, (2002) Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun 70: 762-770.
Chen, L., L. Keramati & J. D. Helmann, (1995a) Coordinate regulation of Bacillussubtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A 92: 8190-8194.
Chen, Y., C. Huang, S. Yao, Y. Chang, P. Shen, C. Chou & S. Li, (2007) Molecular epidemiology of group A Streptococcus causing scarlet fever in northern Taiwan, 2001–2002. Diagn Microbiol Infect Dis 58: 289-295.
Chiou, C. S., T. L. Liao, T. H. Wang, H. L. Chang, J. C. Liao & C. C. Li, (2004) Epidemiology and molecular characterization of Streptococcus pyogenes recovered from scarlet fever patients in central Taiwan from 1996 to 1999. J Clin Microbiol 42: 3998-4006.
Cleary, P. P., U. Prahbu, J. B. Dale, D. E. Wexler & J. Handley, (1992) Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 60: 5219-5223.
Cole, J. N., J. A. Aquilina, P. G. Hains, A. Henningham, K. S. Sriprakash, M. G. Caparon, V. Nizet, M. Kotb, S. J. Cordwell, S. P. Djordjevic & M. J. Walker, (2007) Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 7: 4488-4498.
Collin, M. & A. Olsen, (2001) Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69: 7187-7189.
Collin, M., M. D. Svensson, A. G. Sjoholm, J. C. Jensenius, U. Sjobring & A. Olsen, (2002) EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun 70: 6646-6651.
Courtney, H. S., D. L. Hasty & J. B. Dale, (2006) Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein. Mol Microbiol 59: 936-947.
Datta, V., S. M. Myskowski, L. A. Kwinn, D. N. Chiem, N. Varki, R. G. Kansal, M. Kotb & V. Nizet, (2005) Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56: 681-695.
DeMaster, E., N. Schnitzler, Q. Cheng & P. Cleary, (2002) M(+) group A streptococci are phagocytized and killed in whole blood by C5a-activated polymorphonuclear leukocytes. Infect Immun 70: 350-359.
Edwards, R. J., G. W. Taylor, M. Ferguson, S. Murray, N. Rendell, A. Wrigley, Z. Bai, J. Boyle, S. J. Finney, A. Jones, H. H. Russell, C. Turner, J. Cohen, L. Faulkner & S. Sriskandan, (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192: 783-790.
Fernie-King, B. A., D. J. Seilly & P. J. Lachmann, (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111: 444-452.
Forman, H. J. & M. J. Thomas, (1986) Oxidant production and bactericidal activity of phagocytes. Annu Rev Physiol 48: 669-680.
Fuchs, T. A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann & A. Zychlinsky, (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176: 231-241.
Ganz, T., M. E. Selsted, D. Szklarek, S. S. Harwig, K. Daher, D. F. Bainton & R. I. Lehrer, (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76: 1427-1435.
Ge, R., X. Sun & Q. He, (2009) Iron acquisition by Streptococcus species: An updated review. Front Biol China 4: 392-401.
Gibson, C., M. T. C., A. Claiborne & M. G. Carparon, (2000) NADH oxidase to aerobic metabolism of Streptococcus pyogenes.J Bacteriol 182: 448-455.
Gibson, C. M. & M. G. Caparon, (1996) Insertional inactivation of Streptococcus pyogenessod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol 178: 4688-4695.
Gryllos, I., R. Grifantini, A. Colaprico, M. E. Cary, A. Hakansson, D. W. Carey, M. Suarez-Chavez, L. A. Kalish, P. D. Mitchell, G. L. White & M. R. Wessels, (2008) PerR confers phagocytic killing resistance and allows pharyngeal colonization by group A Streptococcus. PLoS Pathog 4: e1000145.
Gueroult, M., D. Picot, J. Abi-Ghanem, B. Hartmann & M. Baaden, (2010) How cations can assist DNase I in DNA binding and hydrolysis. PLoS Comput Biol 6: e1001000.
Hakansson, A., C. C. Bentley, E. A. Shakhnovic & M. R. Wessels, (2005) Cytolysin-dependent evasion of lysosomal killing. Proc Natl Acad Sci U S A 102: 5192-5197.
Hanks, T. S., M. Liu, M. J. McClure, M. Fukumura, A. Duffy & B. Lei, (2006) Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A Streptococcus. Infect Immun 74: 5132-5139.
Hasegawa, T., M. Minami, A. Okamoto, I. Tatsuno, M. Isaka & M. Ohta, (2010) Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes. Microbiology 156: 184-190.
Hasegawa, T., K. Torii, S. Hashikawa, Y. Iinuma & M. Ohta, (2002) Cloning and characterization of two novel DNases from Streptococcus pyogenes. Archi Microbiol 177: 451-456.
Helmann, J. D., M. F. Wu, A. Gaballa, P. A. Kobel, M. M. Morshedi, P. Fawcett & C. Paddon, (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185: 243-253.
Hidalgo-Grass, C., I. Mishalian, M. Dan-Goor, I. Belotserkovsky, Y. Eran, V. Nizet, A. Peled & E. Hanski, (2006) A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25: 4628-4637.
Horsburgh, M. J., M. O. Clements, H. Crossley, E. Ingham & S. J. Foster, (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69: 3744-3754.
Ish-Horowicz, D. & a. J. F. Burke, (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9: 2989-2998.
Iwasaki, M., H. Igarashi & T. Yutsudo, (1997) Mitogenic factor secreted by Streptococcus pyogenes is a heat-stable nuclease requiring His122 for activity. Microbioogyl 143: 2449-2455.
Janulczyk, R., S. Ricci & L. Bjorck, (2003) MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 71: 2656-2664.
Jones, S. J., A. F. Worrall & B. A. Connolly, (1996) Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. J Mol Biol 264: 1154-1163.
Kamezawa, Y., T. Nakahara, S. Nakano, Y. Abe, J. Nozaki-Renard & T. Isono, (1997) Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect Immun 65: 3828-3833.
Kao, C. H., P. Y. Chen, F. L. Huang, C. W. Chen, C. S. Chi, Y. H. Lin, C. Y. Shih, B. S. Hu, C. R. Li, J. S. Ma, Y. J. Lau, K. C. Lu & H. W. Yu, (2005) Clinical and genetic analysis of invasive and non-invasive group A streptococcal infections in central Taiwan. J Microbiol Immunol Infect 38: 105-111.
King, K. Y., J. A. Horenstein & M. G. Caparon, (2000) Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol 182: 5290-5299.
Kobayashi, S. D., K. R. Braughton, A. R. Whitney, J. M. Voyich, T. G. Schwan, J. M. Musser & F. R. DeLeo, (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A 100: 10948-10953.
Kristian, S. A., V. Datta, C. Weidenmaier, R. Kansal, I. Fedtke, A. Peschel, R. L. Gallo & V. Nizet, (2005) D-alanylation of teichoic acids promotes group AStreptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187: 6719-6725.
Kunkel, S. L., T. Standiford, K. Kasahara & R. M. Strieter, (1991) Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp Lung Res17: 17-23.
Lancefield, R. C., (1933) A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57: 571-595.
Lauth, X., M. von Kockritz-Blickwede, C. W. McNamara, S. Myskowski, A. S. Zinkernagel, B. Beall, P. Ghosh, R. L. Gallo & V. Nizet, (2009) M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun 1: 202-214.
Martinelli, S., M. Urosevic, A. Daryadel, P. A. Oberholzer, C. Baumann, M. F. Fey, R. Dummer, H. U. Simon & S. Yousefi, (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279: 44123-44132.
McNeil, S. A., S. A. Halperin, J. M. Langley, B. Smith, A. Warren, G. P. Sharratt, D. M. Baxendale, M. A. Reddish, M. C. Hu, S. D. Stroop, J. Linden, L. F. Fries, P. E. Vink & J. B. Dale, (2005) Safety and immunogenicity of 26-valent group AStreptococcus vaccine in healthy adult volunteers. Clin Infect Dis 41: 1114-1122.
Medina, E., G. Molinari, M. Rohde, B. Haase, G. S. Chhatwal & C. A. Guzman, (1999) Fc-mediated nonspecific binding between fibronectin-binding protein I of Streptococcus pyogenes and human immunoglobulins. J Immunol 163: 3396-3402.
Medina, E., M. Rohde & G. S. Chhatwal, (2003) Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 71: 5376-5380.
Miyoshi-Akiyama, T., D. Takamatsu, M. Koyanagi, J. Zhao, K. Imanishi & T. Uchiyama, (2005) Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis 192: 107-116.
Morfeldt, E., K. Berggard, J. Persson, T. Drakenberg, E. Johnsson, E. Lindahl, S. Linse & G. Lindahl, (2001) Isolated hypervariable regions derived from streptococcal M proteins specifically bind human C4b-binding protein: implications for antigenic variation. J Immunol 167: 3870-3877.
Moses, A. E., M. R. Wessels, K. Zalcman, S. Alberti, S. Natanson-Yaron, T. Menes & E. Hanski, (1997) Relative contributions of hyaluronic acid capsule and M protein to virulence in a mucoid strain of the group A Streptococcus. Infect Immun 65: 64-71.
Nizet, V., (2007) Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120: 13-22.
Nyberg, P., M. Rasmussen & L. Bjorck, (2004) alpha2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem 279: 52820-52823.
O'Loughlin, R. E., A. Roberson, P. R. Cieslak, R. Lynfield, K. Gershman, A. Craig, B. A. Albanese, M. M. Farley, N. L. Barrett, N. L. Spina, B. Beall, L. H. Harrison, A. Reingold & C. Van Beneden, (2007) The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000-2004. Clin Infect Dis 45: 853-862.
Oehmcke, S., M. Morgelin & H. Herwald, (2009) Activation of the human contact system on neutrophil extracellular traps. J Innate Immun1: 225-230.
Pfaffl, M. W., (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
Pham, C. T., (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6: 541-550.
Podbielski, A., I. Zarges, A. Flosdorff & J. And weber-heynemann, (1996) Molecular characterization of a major serotype M49 Group A streptococcal DNase Gene (sdaD). Infect Immun 64: 5349-5356.
Reid, S. D., M. S. Chaussee, C. D. Doern, M. A. Chaussee, A. G. Montgomery, D. E. Sturdevant & J. M. Musser, (2006) Inactivation of the group A Streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol Med Microbiol 48: 283-292.
Ricci, S., R. Janulczyk & L. Bjorck, (2002) The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes. Infect Immun 70: 4968-4976.
Rodopulo, A. K., (1951) [Oxidation of tartaric acid in wine in the presence of heavy metal salts (activation of oxygen by iron)]. Izv Akad Nauk SSSR Biol 3: 115-128.
Sambrook, J., E. F. Fritsch & a. M. Maniatis, (1989) Molecular Cloning second edition.
Sandin, C., F. Carlsson & G. Lindahl, (2006) Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol 59: 20-30.
Scott, M. G. & R. E. Hancock, (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 20: 407-431.
Simon, D. & J. J. Ferretti, (1991) Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbiol Lett 66: 219-224.
Smith, J. L., (2004) The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol 30: 173-185.
Spencer, R. C., (1995) Invasive streptococci. Eur J Clin Microbiol Infect Dis 14 Suppl 1: S26-32.
Steer, A. C., I. Law, L. Matatolu, B. W. Beall & J. R. Carapetis, (2009) Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9: 611-616.
Stenberg, L., P. O'Toole & G. Lindahl, (1992) Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Mol Microbiol 6: 1185-1194.
Su, Y. F., S. M. Wang, Y. L. Lin, W. J. Chuang, Y. S. Lin, J. J. Wu, M. T. Lin & C. C. Liu, (2009) Changing epidemiology of Streptococcus pyogenesemm types and associated invasive and noninvasive infections in Southern Taiwan. J Clin Microbiol 47: 2658-2661.
Sumby, P., K. D. .Barbian, D. J. Gardner, A. R. Whitney, D. M. Welty, R. D. Long, J. R. Bailey, M. J. Parnell, N. P. Hoe, G. G. Adams & F. R. D. Leo, and MusserJ. M. , (2005) Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Nat Acad Sci 102: 1679-1684.
Sumby, P., S. Zhang, A. R. Whitney, F. Falugi, G. Grandi, E. A. Graviss, F. R. Deleo & J. M. Musser, (2008) A chemokine-degrading extracellular protease made by group A Streptococcusalters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 76: 978-985.
Terao, Y., M. Yamaguchi, S. Hamada & S. Kawabata, (2006) Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281: 14215-14223.
Thern, A., L. Stenberg, B. Dahlback & G. Lindahl, (1995) Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J Immunol 154: 375-386.
Timmer, A. M., J. C. Timmer, M. A. Pence, L. C. Hsu, M. Ghochani, T. G. Frey, M. Karin, G. S. Salvesen & V. Nizet, (2009) Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284: 862-871.
Toyosaki, T., T. Yoshioka, Y. Tsuruta, T. Yutsudo, M. Iwasaki & R. Suzuki, (1996) Definition of the mitogenic factor (MF) as a novel streptococcal superantigen that is different from streptococcal pyrogenic exotoxins A, B, and C. Eur J Immunol 26: 2693-2701.
Trevino, J., N. Perez, E. Ramirez-Pena, Z. Liu, S. A. Shelburne, J. M. Musser & P. Sumby, (2009) CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcusvirulence factor-encoding genes. Infect Immun 77: 3141-3149.
Tsai, P. J., Y. S. Lin, C. F. Kuo, H. Y. Lei & J. J. Wu, (1999) Group A Streptococcus induces apoptosis in human epithelial cells. Infect Immun 67: 4334-4339.
Tsou, C.-C., C. Chiang-Ni, Y.-S. Lin, W.-J. Chuang, M.-T. Lin, C.-C. Liu & J.-J. Wu, (2010) Oxidative stress and metal ions regulate a ferritin-like gene, dpr, in Streptococcus pyogenes. Int J Med Microbiol 300: 259-264.
Tsou, C. C., C. Chiang-Ni, Y. S. Lin, W. J. Chuang, M. T. Lin, C. C. Liu & J. J. Wu, (2008) An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 76: 4038-4045.
von Kockritz-Blickwede, M., O. Goldmann, P. Thulin, K. Heinemann, A. Norrby-Teglund, M. Rohde & E. Medina, (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070-3080.
Voyich, J. M., K. R. Braughton, D. E. Sturdevant, C. Vuong, S. D. Kobayashi, S. F. Porcella, M. Otto, J. M. Musser & F. R. and DeLeo, (2004) Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J Immunol 173: 1194-1201.
Walker, M. J., A. Hollands, M. L. Sanderson-Smith, J. N. Cole, J. K. Kirk, A. Henningham, J. D. McArthur, K. Dinkla, R. K. Aziz, R. G. Kansal, A. J. Simpson, J. T. Buchanan, G. S. Chhatwal, M. Kotb & V. Nizet, (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13: 981-985.
Wartha, F., K. Beiter, S. Normark & B. Henriquesnormark, (2007) Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 10: 52-56.
Yan, J. J., C. C. Liu, W. C. Ko, S. Y. Hsu, H. M. Wu, Y. S. Lin, M. T. Lin, W. J. Chuang & J. J. Wu, (2003) Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J Clin Microbiol 41: 4858-4861.
Yang, D., A. Biragyn, D. M. Hoover, J. Lubkowski & J. J. Oppenheim, (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22: 181-215.
Zanetti, M., (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75: 39-48.
Zinkernagel, A. S., A. M. Timmer, M. A. Pence, J. B. Locke, J. T. Buchanan, C. E. Turner, I. Mishalian, S. Sriskandan, E. Hanski & V. Nizet, (2008) The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4: 170-178.