簡易檢索 / 詳目顯示

研究生: 許哲瑋
Hsu, Che-Wei
論文名稱: 硫化及氯化對精細Ag-Pd-Au-Pt合金導線之打線接合可靠度研究
The Study of Wire Bonding Reliability of Fine Ag-Pd-Au-Pt Alloy Wire after Sulfidation and Chlorination Tests
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 銀導線打線接合硫化氯化
外文關鍵詞: Silver wire, Wire bonding, Sulfidation, Chlorination
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電子封裝業受到金價高漲的影響,促使許多替代材料紛紛被提出。銀線是最具潛力的替代材料之一,但是銀基導線在含有硫的環境中容易有可靠度問題,因此本研究利用固溶微量鉑元素的方式形成銀金鈀鉑合金導線(APAP導線),使銀合金導線提升抗硫化能力。此外,封裝產業使用的封膠及環境中的氯離子也容易造成線材劣化。然而上述銀基導線硫化與氯化的議題在文獻中卻甚少被探討。因此,本實驗利用硫蒸氣及氯化鈉溶液進行硫化及氯化實驗,並研究本系統打線可靠度劣化機制。
      本研究所使用之線材為Ag-2.5Pd-1.5Au-0.15Pt (APAP導線)與無鉑元素固溶的Ag-2.5Pd-1.5Au (APA導線),兩線材經過140℃,持溫時間10min, 20min, 30min, 2hr與4hr的硫化實驗後,硫化銀在APAP導線表面成長速率明顯低於APA導線,且電性亦可維持較長時間不失效。在第一銲點與第二銲點分別經過140℃,持溫時間10min, 30min與2hr硫化實驗,根據接合面的拉伸試驗可確認硫化對銀鋁接合面並無顯著影響。
      氯化實驗是以60℃飽和氯化鈉溶液浸泡的方式進行。APAP線材分別以10s、10min、1hr、2hr、4hr與8hr浸泡後發現拉伸強度及延性在2hr之後有大幅劣化的趨勢,且4hr氯化後破壞形式會由延性轉為脆性破壞模式。第一、二銲點的浸泡時間則是10min與30min,第一銲點在經過30min氯化後會由接合面處剝離,離子束剖面分析結果顯示氯離子會使第一銲點界面的鋁基板遭侵蝕掏空而導致銲點脫落。而第二銲點因下壓力較大,接合緊密,使得接合品質較第一銲點良好,因此只在其邊緣發現些許鋁基板被侵蝕掏空的現象。本研究結果顯示,APAP導線具良好硫侵蝕阻抗,並針對氯化部分解析銲點失效機制,可提供封裝工業應用參考。

    Sulfidation occurs when silver wire is exposed to the environment full of sulfide such as atmosphere and packaging epoxy. Hence, Pt is doped into Ag alloy wire becoming Ag-2.5Pd-1.5Au-0.15Pt (APAP) in order to enhance sulfidation resistance. In addition, the environment and packaging epoxy containing Cl- also make chlorination concern when silver-based wire is used. Accordingly, in this study, sulfur vapor and saturated NaCl solution were used to construct the sulfidation as well as chlorination test, and relative mechanism of sulfidation and chlorination were investigated.
    In sulfidation test, lower sulfide signal was detected on the surface of APAP comparing to Ag-2.5Pd-1.5Au wire (APA) without Pt doping. After 30min sulfidation, APAP remained conductivity, but the electrical properties of APA cannot be measured relatively. The results indicated that Pt doping could enhance sulfidation resistance. In bonding reliability test, sulfidation would not attack Ag-Al interface, which made wire an important influential factor to sulfidation.
    In chlorination test, the tensile properties of APAP deteriorated after 2hr chlorination because Cl- corroded along grain boundaries and caused brittle fracture. In bonding reliability, chlorination made first bond peel off after 30min chlorination due to corrosion of Al pad. Relatively, second bond remain better bonding quality because the compressive force was larger. It was indicated that chlorination caused more reliability concern in first bond.

    摘要 I Abstract III 致謝 X 目錄 XII 圖目錄 XVI 表目錄 XX 第一章 前言 1 第二章 文獻回顧 2 2-1 打線接合製程 2 2-1-1 銲點形式 2 2-1-2 接合技術[4-6] 3 2-2 接合導線材料 4 2-2-1 金線 5 2-2-2 銅基導線 5 2-2-3 銀基導線 6 2-2-4 銀金鈀鉑合金導線 7 2-3 放電結球製程 8 2-4 成球微觀組織及機械性質 9 2-5 氯化試驗 10 2-6 硫化試驗 11 2-7 研究目的 12 第三章 實驗步驟與方法 16 3-1 實驗材料 16 3-2 拉伸試驗 17 3-2-1 線材拉伸試驗 17 3-2-2 通電拉伸試驗 17 3-2-3 第一銲點拉伸試驗 18 3-3 通電試驗及IV曲線電性量測 18 3-4 微觀組織觀察 18 3-5 放電結球與打線接合 19 3-6 奈米壓痕硬度測試 20 3-7 EPMA元素分布分析 20 3-8 硫化試驗 21 3-8-1 線材硫化試驗 21 3-8-2 第一與二銲點硫化試驗 22 3-9 氯化試驗 22 3-9-1 線材氯化試驗 22 3-9-2 第一與二銲點氯化試驗 23 第四章 實驗結果與討論 30 4-1 銀金鈀鉑合金線材可靠度分析 30 4-1-1 通電試驗 30 4-1-2 通電拉伸試驗 32 4-1-3 硫化試驗 33 4-1-4 氯化試驗 35 4-2 放電結球特性分析 37 4-2-1 結球外觀及微觀組織 37 4-2-2 EPMA元素分布分析 37 4-2-3 球部與熱影響區硬度分布 38 4-3 第一銲點接合可靠度分析 38 4-3-1 硫化試驗 38 4-3-2 氯化試驗 39 4-4 第二銲點接合可靠度分析 40 4-4-1 硫化試驗 40 4-4-2 氯化試驗 41 4-5 綜合討論 42 第五章 結論 78 參考文獻 80

    [1] A. C. Fischer, J. G. Korvink, N. Roxhed, G. Stemme, U. Wallrabe, and F. Niklaus, "Unconventional applications of wire bonding create opportunities for microsystem integration", Journal of Micromechanics and Microengineering, vol. 23, pp. 1-18, 2013.
    [2] I. Qin, H. Xu, B. Milton, N. Mendoza, H. Clauberg, B. Chylak, H. Abe, D. Kang, Y. Endo, and M. Osaka, "Process optimization and reliability study for Cu wire bonding advanced nodes," Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, pp. 1523-1528, 2014.
    [3] P. S. Chauhan, A. Choubey, Z. Zhong, and M. G. Pecht, "Copper Wire Bonding," 1st edn. Springer New York, pp. 1-9, 2014.
    [4] 許明哲,「先進微電子 3D-IC 構裝」,民國一百年。
    [5] A. Coucoulas, "Hot Work Ultrasonic Bonding-A Method of Facilitating Metal Flow by Restoration Process," Proc. 20 IEEE Electronic Components Conf, pp. 549-556, 1970.
    [6] O. Anderson, H. Christensen, and P. Andreatch, "Technique for connecting electrical leads to semiconductors", Journal of Applied Physics, vol. 28, pp. 923-924, 1957.
    [7] H. H. Tsai, J. D. Lee, C. H. Tsai, H. C. Wang, C. C. Chang, and T. H. Chuang, "An innovative annealing-twinned Ag-Au-Pd bonding wire for IC and LED packaging," Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International, pp. 243-246, 2012.
    [8] C. Lu, "Review on silver wire bonding," Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, pp. 226-229, 2013.
    [9] G. G. Harman, Wire bonding in microelectronics: McGraw-Hill, 2010.
    [10] M. Guerdane, "Self-diffusion in intermetallic AlAu 4: Molecular dynamics study down to temperatures relevant to wire bonding", Computational Materials Science, vol. 129, pp. 13-23, 2017.
    [11] B. März, A. Graff, R. Klengel, and M. Petzold, "Interface microstructure effects in Au thermosonic ball bonding contacts by high reliability wire materials", Microelectronics Reliability, vol. 54, pp. 2000-2005, 2014.
    [12] H. S. Chang, K. C. Hsieh, T. Martens, and A. Yang, "The effect of Pd and Cu in the intermetallic growth of alloy Au wire", Journal of electronic materials, vol. 32, pp. 1182-1187, 2003.
    [13] Z. Zhong, "Wire bonding using copper wire", Microelectronics International, vol. 26, pp. 10-16, 2009.
    [14] S. Murali, N. Srikanth, and C. J. Vath, "An analysis of intermetallics formation of gold and copper ball bonding on thermal aging", Materials Research Bulletin, vol. 38, pp. 637-646, 2003.
    [15] H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, and Y. J. Park, "Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability", IEEE Transactions on Components and Packaging Technologies, vol. 26, pp. 367-374, 2003.
    [16] S. Kaimori, T. Nonaka, and A. Mizoguchi, "The development of Cu bonding wire with oxidation-resistant metal coating", IEEE Transactions on Advanced Packaging, vol. 29, pp. 227-231, 2006.
    [17] C. Y. Chang, F. Y. Hung, and T. S. Lui, "Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold", Journal of Electronic Materials, pp. 1-8, 2017.
    [18] M. Schneider Ramelow and C. Ehrhardt, "The reliability of wire bonding using Ag and Al", Microelectronics Reliability, vol. 63, pp. 336-341, 2016.
    [19] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen, and K. J. Chen, "Intermetallic phase on the interface of Ag-Au-Pd/Al structure", Advances in Materials Science and Engineering, vol. 2014, 2014.
    [20] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, "Reliability study of low cost alternative Ag bonding wire with various bond pad materials," Electronics Packaging Technology Conference, 2009. EPTC'09. 11th, pp. 851-857, 2009.
    [21] P. S. Ho and H. Huntington, "Electromigration and void observation in silver", Journal of Physics and Chemistry of Solids, vol. 27, pp. 1319-1329, 1966.
    [22] 陳眉瑜,「Ø20µm Ag-2Pd 合金導線放電結球特性及打線接合界面通電效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零二年。
    [23] G. Liqun, C. Qiang, L. Juanjuan, C. Zhengrong, Z. Jianwei, D. Maohua, and M. Chung, "Comparison of Ag Wire and Cu Wire in Memory Package", ECS Transactions, vol. 52, pp. 747-751, 2013.
    [24] N. Ly, D. E. Xu, W. H. Song, and M. Mayer, "More uniform Pd distribution in free-air balls of Pd-coated Cu bonding wire using movable flame-off electrode", Microelectronics Reliability, vol. 55, pp. 201-206, 2015.
    [25] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. Huang, and Y. P. Wang, "Silver alloy wire bonding," Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, pp. 1163-1168, 2012.
    [26] L. Volpe and P. Peterson, "The atmospheric sulfidation of silver in a tubular corrosion reactor", Corrosion Science, vol. 29, pp. 1189-1196, 1989.
    [27] R. Zeiser, P. Wagner, and J. Wilde, "Investigation of ultrasonic platinum and palladium wire bonding as interconnection technology for high-temperature SiC-MEMS," Electronic System-Integration Technology Conference (ESTC), 2012 4th, pp. 1-6, 2012.
    [28] http://www.cnyes.com/futures/heavymetal.aspx -鉅亨網期貨金融中心-貴金屬期貨價格
    [29] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang, and J. T. Moon, "Thermosonic ball bonding behavior and reliability study of Ag alloy wire," Electronic Packaging Technology (ICEPT), 2013 14th International Conference on, pp. 254-259, 2013.
    [30] K. Toyozawa, K. Fujita, S. Minamide, and T. Maeda, "Development of copper wire bonding application technology", IEEE transactions on components, hybrids, and manufacturing technology, vol. 13, pp. 667-672, 1990.
    [31] R. Guo, L. Gao, D. Mao, M. Li, X. Wang, Z. Lv, and H. Chiu, "Study of free air ball formation in Ag-8Au-3Pd alloy wire bonding", Microelectronics Reliability, vol. 54, pp. 2550-2554, 2014.
    [32] R. Ismail, G. Omar, A. Jalar, and B. Y. Majlis, "The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging", Journal of Electronic Materials, vol. 44, p. 2507, 2015.
    [33] 薛皓文,「退火溫度對 23μm 銀導線打線接合之再結晶及拉伸性質效應探討」,成功大學材料科學及工程學系碩士論文,民國九十九年。
    [34] 蔡咏真,「微細 Ag-2Pd-0.2 Au 合金導線放電結球特性及接合界面通電與熱效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零四年。
    [35] Y. W. Lin, R. Y. Wang, W. B. Ke, I. S. Wang, Y. T. Chiu, K. C. Lu, K. L. Lin, and Y. S. Lai, "The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation", Materials Science and Engineering: A, vol. 543, pp. 152-157, 2012.
    [36] Y. Yamaji, M. Hori, H. Ikenosako, Y. Oshima, T. Suda, A. Umeki, M. Kandori, M. Oida, H. Goto, and A. Katsumata, "IMC study on Cu wirebond failures under high humidity conditions," Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th, pp. 480-485, 2011.
    [37] T. Uno, "Bond reliability under humid environment for coated copper wire and bare copper wire", Microelectronics Reliability, vol. 51, pp. 148-156, 2011.
    [38] T. Graedel, "Corrosion mechanisms for silver exposed to the atmosphere", Journal of the Electrochemical Society, vol. 139, pp. 1963-1970, 1992.
    [39] N. Sarkar, R. Fuys Jr, and J. Stanford, "The chloride corrosion behavior of silver-base casting alloys", Journal of dental research, vol. 58, pp. 1572-1577, 1979.
    [40] M. L. Minges, Electronic materials handbook: packaging vol. 1: Asm International, 1989.
    [41] L. Zhang, Y. Zhu, H. Chen, K. Leung, Y. Wu, and J. Wu, "Failure analysis on reflector blackening between lead frame electrodes in LEDs under WHTOL test", Microelectronics Reliability, vol. 55, pp. 799-806, 2015.
    [42] H. W. Hsueh, F. Y. Hung, and T. S. Lui, "A study on electromigration-inducing intergranular fracture of fine silver alloy wires", Applied Physics Letters, p. 110, 2017.

    無法下載圖示 校內:2022-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE