| 研究生: |
林宏昌 Lin, Hong-Chang |
|---|---|
| 論文名稱: |
以最佳化平行分子動力學探討薄膜沈積問題 Investigation of the thin film deposition by means of the optimal parallel molecular dynamics simulations |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 薄膜沈積 、平行化分子動力學 、合金薄膜 、鑲嵌製程 |
| 外文關鍵詞: | parallel molecular dynamics, alloy thin film, damascene process, thin film deposition |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前以分子動力學模擬薄膜沈積的研究非常廣泛,但仍然存在1)薄膜能量累積問題與2)總計算量過大或計算效能因粒子數不斷增加而下降之問題。為了解決薄膜能量累積所產生的誤差,在此乃提出三種創新溫度控制演算法來有效維持薄膜溫度,其分別為以精確性主導之KEC (Kinetic Energy Corrector)動能控制方法、運算效率主導之TLM (Thermal control Layer Marching)溫度控制調移演算法及兼具精確性與運算效率之TLMC (Thermal control Layer Marching algorithm with kinetic energy Corrector)整合方法,並提出在不同入射能量之下所適合之自由反應層厚度。而對於總計算過大之處理方法乃引進平行化技巧,其中最佳化之力切割與空間切割法乃分別應用於半導體雙鑲嵌製程與合金薄膜沈積製程中,這兩項應用課題在溫度控制上也一併採用TLM方法來進行加速模擬。
於雙鑲嵌製程中探討引洞幾何、入射動能與尺寸大小對於填充形貌的影響,並發現不同的上下引洞寬度比與入射動能會對上下引洞填充率造成不同之交互影響性,且透過導角的引入更明顯改善最終的填充結果;另外,以二維雙鑲嵌系統來討論尺寸效應,發現不同的尺寸大小乃直接反應出填充率與填充型態上的差異,本文預測大約銅導線線寬8nm為幾何效應的分界;其中透過三維模型的模擬後,更發現非對稱結構導致不同方向具有不同的填充行為,且各方向的填充阻礙將互相影響而嚴重放大,故以二維簡化模型來預測三維系統是不太準確的。
於合金薄膜中則探討沈積、加熱與退火等過程之結構特性,透過徑向分佈函數與聚集原子數的分析可以發現,合金隨著溫度的變化,薄膜內部會產生不同程度之聚集行為。最後,乃針對目前的平行化分子動力學模擬薄膜沈積課題提出未來展望與理論突破的方向。
Up to now, the research of the thin film deposition using molecular dynamics simulations is very comprehensive, but the queries of 1) thin film energy accumulation and 2) total amount of calculations is too large or particles increasing constantly caused in decay of computational efficiency still exist. In order to correct errors for thin film energy accumulation, we have proposed three kinds of innovative temperature control algorithms to effectively maintain the temperature of thin film. The kinetic energy corrector algorithm (KEC) is relative to accuracy, and the thermal control layer marching algorithm (TLM) is with respect to efficiency. Finally, the thermal control layer marching algorithm with kinetic energy corrector (TLMC) is combined that both accuracy and efficiency. Besides, we address the various suitable thickness of the free reaction layer under different incident energy. On the other hand, the parallel technique applied to treat the problem concerning with vast calculating amount is also introduced. Force Decomposition and Spatial Decomposition Algorithms are applied to dual damascene processing and alloy thin film deposition, respectively. Moreover, both them are adopted to control temperature and accelerate simulation by using TLM algorithm.
For dual damascene processing, the influence of filling morphology are explored under various conditions, such as via-geometry, incident energy and system size. Our significant results show that the different upper/lower via-radius ratio and incident energy caused in different interaction that influence on upper/lower coverage percentage. Furthermore, when beveled angles are introduced, the final filling coverage is obviously improved. In addition, the size effect with the two-dimensional dual damascene system is discussed and results have shown the difference both with the filling rate and filling type in different system size. Thereof, the width of the copper conductor in 8nm with a boundary of the effect of geometry has been predicted. Moreover, the asymmetrical structures caused in different directions with different filling behaviors by means of the simulation for three-dimensional model have also examined. Finally, we found the difference of filling hindering from every direction, indeed, it can affect each other and enlarge seriously, thus it is not very accuracy using simplify two-dimensional model to predict three-dimensional system.
For the thin film of alloy, the structure characteristics in deposition, heating and annealing processing are treated. Our most important result has shown the inner thin film produced various aggregation abilities that accompanied the temperature exchange of alloy through analysis of radial distribution function and aggregation atom. Eventually, we propose the direction of future perspective and theoretical breakthrough to insight into the subjects in relation to thin film deposition by using parallel molecular dynamics simulation.
[1] J. G. Chang, M. H. Su, C. T. Lee and C. C. Hwang, Generating random and
nonoverlapping dot patterns for liquid‐crystal display backlight light guides
using molecular‐dynamics method, Journal of Applied Physics, 98, 114910,
2005
[2] W. K. Liu and M. B. Santos, Thin films: heteroepitaxial system, World
Scientific, 1999
[3] K. S. Sree Harsha, Principles of physical vapor deposition of thin films,
ELSEVIER, 2006
[4] W. Kohn and L. J. Sham, Self‐consistent equations including exchange and
correlation effects, Physical Review, 140, 1133, 1965
[5] E. F. Hartree, Determination of protein ‐ modification of lowry method that
gives a linear photometric response, Analytical Biochemistry, 48, 422, 1972
[6] J. H. Ammeter, H. B. Burgi, J. C. Thibeault and R. Hoffmann,
Counterintuitive orbital mixing in semi‐empirical and abinitio
molecular‐orbital calculations, Journal of the American Chemical Society,
100, 3686‐3692, 1978
[7] J. A. Pople, D. P. Santry and G. A. Segal, Approximate self‐consistent
molecular orbital theory .i. invariant procedures, Journal of Chemical
Physics, 43, 129, 1965
[8] J. A. Pople and G. A. Segal, Approximate self‐consistent molecular orbital
theory .2. calculations with complete neglect of differential overlap, Journal
of Chemical Physics, 43, 136, 1965
[9] M. J. S. Dewar and E. Healy, Ground‐states of molecules .64. MNDO
calculations for compounds containing bromine, Journal of Computational
Chemistry, 4, 542‐551, 1983
[10] J. A. Pople, D. L. Beveridg and P. A. Dobosh, Approximate self‐consistent
molecular‐orbital theory .5. intermediate neglect of differential overlap,
Journal of Chemical Physics, 47, 2026, 1967
[11] M. P. Allen and D. J. Tildesley, Computer simulation of liquid, Oxford
University Press, 1987[12] J. M. Haile, Molecular dynamics simulation elementary method, New York:
John‐Wiley, 1992
[13] D. Raable, Computational materials science, New York: Wiley‐VCH, 1998
[14] A. R. Leach, Molecular modeling principle and application, London:
Longman
[15] R. T. Hong, M. J. Huang and J. Y. Yang, Molecular dynamics study of copper
trench filling in damascene process, Materials Science in Semiconductor
Processing, 8, 587‐601, 2005
[16] J. Y. Yang, R. T. Hong and M. Huang, A comparative molecular dynamics
study of copper trench fill properties between Ta and Ti barrier layers,
Materials Science in Semiconductor Processing, 8, 622‐629, 2005
[17] C. J. Chu and T. C. Chen, Surface properties of film deposition using
molecular dynamics simulation, Surface & Coatings Technology, 201,
1796‐1804, 2006
[18] Y. Wang, J. Li, A. V. Hamza and T. W. B. Jr, Ductile crystalline‐amorphous
nanolaminates, PNAS, 104, 11155‐11160, 2007
[19] H. R. Gong and B. X. Liu, Unusual alloying behavior at the equilibrium
immiscible Cu‐Nb interfaces, Journal of Applied Physics, 96, 3020, 2004
[20] C. C. Aydiner, D. W. Brown, A. Misra, N. A. Mara, Y. C. Wang, J. J. Wall and
J. Almer, Residual strain and texrure in free‐standing nanoscale Cu‐Nb
multilayers, Journal of Applied Physics, 102, 083514, 2007
[21] S. J. Plimpton, Computational limits of classical molecular dynamics
simulations, Computational Materials Sciences, 4, 361‐364, 1995
[22] W. Smith, Molecular dynamics on hypercube parallel computers, Computer
Physics Communications, 62, 229‐248, 1991
[23] B. R. Brooks and M. Hodošček, Parallelization of CHARMM for MIMD
machines, Chemical Design Automation News, 7, 16‐22, 1992
[24] T. W. Clark, J. A. McCammon and L. R. Scott, Parallel molecular dynamics,
Proc. 5th SIAM Conference on Parallel Processing for Scientific Computing,
338‐344, 1992
[25] S. E. DeBolt and P. A. Kollman, AMBERCUBE MD, Parallelization ofAMBER’s molecular dynamics module for distributed‐memory hypercube
computers, Journal of Computational Chemistry, 14, 312‐329, 1993
[26] J. F. Janak and P. C. Pattnaik, Protein calculations on parallel processors: II.
Parallel algorithm for forces and molecular dynamics, Journal of
Computational Chemistry, 13, 1098‐1102, 1992
[27] S. L. Lin, J. Mellor‐Crummey, B. M. Pettit and G. N. Phillips Jr, Molecular
dynamics on a distributed‐memory multiprocessor, Journal of
Computational Chemistry, 13, 1022‐1035, 1992
[28] H. Sato, Y. Tanaka, H. Iwama, S. Kawakika, M. Saito, K. Morikami, T. Yao
and S. Tsutsumi, Parallelization of AMBER molecular dynamics program for
the AP1000 highly parallel computer, Proc. Scalable High Performance
Computing Conference‐92, 113‐120, 1992
[29] W. Smith and T. R. Forester, Parallel macromolecular simulations and the
replicated data strategy: I. The computation of atomic forces, Computer
Physics Communications, 79, 52‐62, 1994
[30] S. J. Plimpton, Fast parallel algorithms for short‐range molecular‐dynamics,
Journal of Computational Physics, 117, 1‐19, 1995
[31] S. J. Plimpton and B. A. Hendrickson, A new parallel method for molecular
dynamics simulation of macromolecular systems, Journal of Computational
Chemistry, 17, 326‐337, 1996
[32] T. W. Clark, R. V. Hanxleden, J. A. McCammon and L. R. Scott, Parallelizing
molecular dynamics using spatial decomposition, Proc. Scalable High
Performance Computing Conference‐94, 95‐102, 1994
[33] K. Esselink and P. A. J. Hilbers, Efficient parallel implementation of
molecular dynamics in a toroidal network: II. Multi‐particle potentials,
Journal of Computational Physics, 106, 108‐114, 1993
[34] S. J. Plimpton and B. A. Hendrickson, Parallel Molecular Dynamics
Algorithms for Simulation of Molecular Systems, Parallel Computing in
Computational Chemistry, 592, 114, 1995
[35] T. E. Karakasidis, N. S. Cholevas and A. B. Liakopoulos, Parallel short range
molecular dynamics simulations on computer clusters: Performance
evaluation and modeling, Mathematical and Computer Modeling, 42,783‐798, 2005
[36] Z. Y. Mo, J. L. Zhang and Q. D. Cai, Dynamic load balancing for short‐range
parallel molecular dynamics simulations, International Journal of Computer
Mathematics, 79, 165‐177, 2002
[37] S. G. Srinivasan, I. Ashok, H. Jonsson, G. Kalonji and J. Zahorjan, Parallel
short‐range molecular dynamics using the Adhara runtime system,
Computer Physics Communications, 102, 28‐43, 1997
[38] T. Darden, D. York and L. Pedersen, Particle mesh Ewald: An Nlog(N)
method for Ewald sums in large systems, Journal of Chemical Physics, 98,
10089‐10092, 1993
[39] D. M. York, T. A. Darden and L. G. Pedersen, The effect of long‐range
electrostatic interactions in simulations of macromolecular crystals: A
comparison of the Ewald and truncated list methods, Journal of Chemical
Physics, 99, 8345‐48, 1993
[40] W. Smith, A replicated data molecular‐dynamics strategy for the parallel
ewald sum, Computer Physics Communications, 67, 392‐406, 1992
[41] V. E. Taylor, R. L. Stevens and K. E. Arnold, Parallel molecular dynamics:
Communication requirements for massively parallel machines, Proceedings
of the Fifth Symposium on the Frontiers of Massively Parallel Computation,
1994, pp. 156‐163.
[42] R. Murty and D. Okunbor, Efficient parallel algorithms for molecular
dynamics simulations, Parallel Computing, 25, 217‐230, 1999
[43] J. W. Shu, B. Wang, M. Chen, J. Z. Wang and W. M. Zheng, Optimization
techniques for parallel force‐decomposition algorithm in molecular dynamic
simulations, Computer Physics Communications, 154, 121‐130, 2003
[44] S. J. Plimpton and B. A. Hendrickson, Parallel Molecular Dynamics with the
Embedded Atom Method, in Materials Theory and Modeling, p37 (MRS
Proceeding 291, Pittsburgh, PA, 1993)
[45] C. F. Cornwell and L. T. Wille, Parallel molecular dynamics simulation for
short‐ranged many‐body potential, Computer Physics Communications, 128,
477‐491, 2000
[46] M. R. Wilson, M. P. Allen, M. A. Warren, A. Sauron and W. Smith,Replicated data and domain decomposition molecular dynamics techniques
for simulation of anisotropic potentials, Journal of Computational Chemistry,
18, 478‐488, 1997
[47] J. H. Li, Z. W. Zhou and R. J. Sadus, Modified force decomposition
algorithms for calculating three‐body interactions via molecular dynamics,
Computer Physics Communications, 175, 683‐691, 2006
[48] S. L. Lin, B. M. Pettitt and G. N. Phillips, Molecular‐dynamics with charmm
on a parallel computer, Faseb Journal, 6, a464‐a464, 1992
[49] E. Swanson and T. P. Lybrand, A parallel implementation of AMBER on
workstation clusters, Abstracts of Papers of the American Chemical Society,
213, 112‐COMP Part 1, 1997
[50] M. F. Crowley, Fine and coarse grain parallel AMBER and Particle‐Mesh
Ewald on MPPʹs, Abstracts of Papers of the American Chemical Society, 213,
113‐COMP Part 1, 1997
[51] E. Swanson and T. P. Lybrand, PVM‐Amber ‐ a parallel implementation of
the amber molecular mechanics package for workstation clusters, Journal of
Computational Chemistry, 16, 1131‐1140, 1995
[52] C. Kutzner, D. Van der Spoel, M. Fechner, E. Lindahl, U. W. Schmitt, B. L. De
Groot and H. Grubmuller, Software news and update ‐ Speeding up parallel
GROMACS on high‐latency networks, Journal of Computational Chemistry,
28, 2075‐2084, 2007
[53] H. J. C. Berendsen, D. Vanderspoel and R. Vandrunen, Gromacs ‐ a
message‐passing parallel molecular‐dynamics implementation, Computer
Physics Communications, 91, 43‐56, 1995
[54] R. Vandrunen, D. Vanderspoel and H. J. C. Berendsen, Gromacs ‐ a software
package and a parallel computer for molecular‐dynamics, Abstracts of
Papers of the American Chemical Society, 209, 49‐comp part 1, 1995
[55] G. H. Gilmer, Simulations of vapor‐deposition by molecular‐dynamics,
Abstracts of Papers of the American Chemical Society, 175, 72‐72, 1978
[56] G. H. Gilmer, M. H. Grabow and A. F. Bakker, Modeling of epitaxial growth,
Material Science and Engineering B, 6, 101‐112, 1990
[57] K. H. Muller, Cluster‐beam deposition of thin‐films ‐ a molecular‐dynamicssimulation, Journal of Applied Physics, 61, 2516‐2521, 1987
[58] R. Biswas, G. S. Grest and C. M. Soukoulis, Molecular‐dynamics simulation
of cluster and atom deposition on silicon(111), Physical Review B, 38,
8154‐8162, 1988
[59] J. Jortner, Cluster‐size effects revisited, Journal de Chimie Physique et de
Physico‐Chimie Biologique, 92, 205‐225, 1995
[60] H. W. Lu, J. Q. Xie and J. Y. Feng, Simulation study on Si and Ge film growth
by cluster deposition, Nuclear Instruments & Methods in Physics Research
Section B‐ Beam Interactions with Materials and Atoms, 170, 71‐78, 2000
[61] J. W. Kang, K. S. Choi, J. C. Kang, E. S. Kang, K. R. Byun and H. J. Hwang,
Cluster deposition study by molecular dynamics simulation: Al and Cu
cluster, Journal of Vacuum Science & Technology A, 19, 1902‐1906, 2001
[62] J. W. Kang and H. J. Hwang, Molecular dynamics simulations of energetic
aluminum cluster deposition, Computational Materials Science, 23, 105‐110,
2002
[63] A. Dzhurakhalov, A. Rasulov, T. Hoof and M. Hou, Ag‐Co clusters
deposition on Ag(100): an atomic scale study, European Physical Journal D,
31, 53‐61, 2004
[64] T. hoof, A. Dzhurakhalov and M. Hou, Interface formation by low energy
deposition of core‐shell Ag‐Co nanoclusters on Ag(100), European Physical
Journal D, 43, 159‐163, 2007
[65] X. W. Zhou, R. A. Johnson and H. N. G. Wadley, A molecular dynamics
study of nickel vapor deposition: temperature, incident angle, and adatom
energy effects, ACTA Materialia, 45, 1513‐1524, 1997
[66] M. Kubo, Y. Oumi, H. Takaba, A. Chatterjee and A. Miyamoto, Chemical
vapor deposition process on the ZSM‐5(010) surface as investigated by
molecular dynamics, Journal of Physical Chemistry B, 103, 1876‐1880, 1999
[67] M. Yamashita, Fundamental characteristics of built‐in high‐frequency
coil‐type sputtering apparatus, Journal of Vacuum Science & Technology AVacuum
Surfaces and Films, 7, 151‐158, 1989.
[68] S. M. Rossnagel and J. Hopwood, Metal‐ion deposition from ionized
magnetron sputtering discharge, Journal of Vacuum Science & Technology B,12, 449‐453, 1994
[69] S. M. Rossnagel and J. Hopwood, Magnetron sputter‐deposition with
high‐levels of metal ionization, Applied Physics Letters, 63, 3285‐3287, 1993
[70] N. A. Kubota, D. J. Economou and S. J. Plimpton, Molecular dynamics
simulations of low‐energy (25‐200 ev) argon ion interactions with silicon
surfaces: sputter yields and product formation pathways, Journal of Applied
Physics, 83, 4055‐4063, 1998
[71] D. G. Coronell, D. E. Hansen, A. F. Voter, C. L. Liu, X. Y. Liu and J. D. Kress,
Molecular dynamics‐based ion‐surface interaction models for ionized
physical vapor deposition feature scale simulations, Applied Physics Letters,
73, 3860‐3862, 1998
[72] U. Hansen and A. Kersch, Reaction rates for ionized physical vapor
deposition modeling from molecular‐dynamics calculations: effect of surface
roughness, Physical Review B, 60, 14417‐14421, 1999
[73] S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, Molecular dynamics
simulation of sputter trench‐filling morphology in damascene process,
Journal of Vacuum Science & Technology B, 20, 946‐955, 2002
[74] C. C. Hwang, G. J. Huang, S. P. Ju and J. G. Chang, Incident ion
characteristics in ionized physical vapor deposition using molecular
dynamics simulation, Surface Science, 512, 135‐150, 2002
[75] C. C. Hwang, G. J. Huang, J. G. Chang and S. P. Ju, Study of argon
characteristics in ion physical vapor deposition using molecular dynamics
simulation, Journal of Applied Physics, 91, 3569‐3578, 2002
[76] M. H. Su, C. C. Hwang, J. G. Chang and S. P. Ju, Molecular dynamics
simulation of copper reflow in damascene process, Journal of Vacuum
Science & Technology B, 20, 1853‐1865, 2002
[77] M. H. Su, C. C. Hwang, J. G. Chang and S. H. Wang, Microstructure
evolution analysis in Co/Cu layers during the annealing process, Journal of
Applied Physics, 93, 4566‐4575, 2003
[78] S. P. Ju, C. I. Weng and C. C. Hwang, Damascene process simulation using
molecular dynamics, Journal of Applied Physics, 92, 7062‐7069, 2002
[79] K. H. Muller, Stress and microstructure of sputter‐deposited thin‐films ‐molecular‐dynamics investigations, Journal of Applied Physics, 62,
1796‐1799, 1987
[80] C. C. Fang, F. Jones, R. R. Kola, G. K. Celler and V. Prasad, Stress and
microstructure of sputter ‐deposited thin‐films ‐ molecular‐dynamics
simulations and experiment, Journal of Vacuum Science & Technology B, 11,
2947‐2952, 1993
[81] C. C. Fang, F. Jones and V. Prasad, Effect of gas impurity and ionbombardment
on stresses in sputter‐deposited thin‐films ‐ a
molecular‐dynamics approach, Journal of Applied Physics, 74, 4472‐4482,
1993
[82] C. C. Fang, V. Prasad and F. Jones, Molecular‐dynamics modeling of
microstructure and stresses in sputter‐deposited thin‐films, Journal of
Vacuum Science & Technology A‐ Vacuum Surfaces and Films, 11, 2778‐2789,
1993
[83] S. Nose and M. L. Klein, Molecular‐dynamics study of the alloy (N2)67(Ar)29,
Canadian Journal of Physics, 63, 1270‐1273, 1985
[84] R. Takagi, A. K. Adya and K. Kawamura, Molecular‐dynamics simulation of
amorphous Pd80Si20 alloy, transactions of the Japan Institute of Metals, 28,
761‐764, 1987
[85] K. Hoshino and J. J. Vanwering, Molecular‐dynamics study of the structure
of a liquid Li‐Na alloy, Journal of Physics F‐ Metal Physics, 18, l23‐l26, 1988
[86] V. S. Stepanyuk, A. A. Katsnelson, O. S. Trushin and A. Szasz, Structure of
the amorphous Fe‐B alloy modeled by molecular‐dynamics, Physica Status
Solidi A‐Applied Research, 122, k7‐k9, 1990
[87] M. Maret, F. Lancon and L. Billard, A molecular‐dynamics study of the
liquid Al80Mn20 alloy using pair potentials derived from diffraction
experiments, Physica B, 180, 854‐856, 1992
[88] J. Lu and J. A. Szpunar, Molecular‐dynamics simulation of mechanical
alloying for the Al50Ti50 alloy, Journal of Applied Physics, 74, 902‐904, 1993
[89] H. Li, G. H. Wang, F. Ding, J. L. Wang and W. F. Shen, Molecular dynamics
computation of clusters in liquid Fe‐Al alloy, Physics Letters A, 280, 325‐332,
2001[90] H. Li, X. F. Bian and G. H. Wang, Molecular dynamics computation of the
liquid structure of Fe50Al50 alloy, Materials Science and Engineering
A‐Structural Materials Properties Microstructure and Processing, 298,
245‐250, 2001
[91] M. Guerdane and H. Teichler, Structure of the amorphous,
massive‐metallic‐glass forming Ni25Zr60Al15 alloy from molecular
dynamics simulations, Physical Review B, 65, 014203, 2002
[92] X. J. Han and H. Teichler, Liquid‐to‐glass transition in bulk glass‐forming
Cu60Ti20Zr20 alloy by molecular dynamics simulations, Physical Review E,
75, 061501, 2007
[93] S. N. Sambandam, S. Bhansali, V. R. Bhethanabotla and D. K. Sood, Studies
on sputtering process of multicomponent Zr‐Ti‐Cu‐Ni‐Be alloy thin films,
Vacuum, 80, 406‐414, 2006
[94] S. Matsuoka, M. Hasebe, R. Oshima and F. E. Fujita, Improvement of
ductility of melt spun Cu‐Al‐Ni shape memory alloy ribbons by addition of
Ti or Zr, Japanese Journal of Applied Physics part 2‐letters, 22, l528‐l530,
1983
[95] R. Busch, E. Bakke and W. L. Johnson, Solid state amorphization and
metastable supercooled melting in the Zr‐Al‐Cu‐Ni bulk metallic glass
forming alloy system, Materials Science Forum, 225, 141‐146, 1996
[96] Y. Q. Gao, Y. B. Lo, X. Q. Yang, S. L. Li and Y. S. Gao, Glass forming and
crystallization in Ti‐Zr‐Ni‐Ge, Ti‐Ni‐Cu‐Al and Ti‐Zr‐Fe alloy systems,
International Journal of Rapid Solidification, 6, 231‐245, 1991
[97] T. Yamauchi, M. Yamada, K. Tanaka, Y. Yamada and U. Mizutani, SxS study
on local structures about aluminum atoms in ternary (Cu, Ni)‐(Ti, Zr)‐al
alloy glasses, Journal of the Physical Society of Japan, 58, 255‐259, 1989
[98] J. S. Lee and C. M. Wayman, Grain‐refinement of a Cu‐Al‐Ni shape memory
alloy by Ti and Zr additions, transactions of the Japan Institute of Metals, 27,
584‐591, 1986
[99] M. Qi and H. J. Fecht, On the thermodynamics and kinetics of crystallization
of a Zr‐Al‐Ni‐Cu‐based bulk amorphous alloy, Materials Characterization,
47, 215‐218, 2001[100] H. J. Liu, W. R. Chen, Y. M. Wang, D. H. Wang, D. J. Li and C. Dong, A new
bulk Zr‐Al‐Ni‐Cu amorphous alloy, ACTA Metallurgica Sinica, 39, 938‐942,
2003
[101] M. Iqbal, J. I. Akhter, W. S. Sun, H. F. Zhang and Z. Q. Hu, Synthesis and
mechanical properties of an amorphous Zr‐Ni‐Al‐Cu alloy, Journal of Alloys
and Compounds, 422, 218‐222, 2006
[102] R. W. Hockni and I. W. Istwood, Computer Simulation Using Particles, New
York: McGraw‐Hill, 1981
[103] C. L. Kelchner and A. E. DePristo, Molecular dynamics simulations of
multilayer homoepitaxial thin film growth in the diffusion‐limited regime,
Surface Science, 393, 72‐84, 1997
[104] A. F. Voter, A method for accelerating the molecular dynamics simulation of
infrequent events, Journal of Chemical Physics, 106, 4665‐4677, 1997
[105] F. Cleri and V. Rosato, Tight‐binding potentials for transition metals and
alloys, Physical Review B, 48, 22‐33, 1993
[106] M. Ladeveze, G. Treglia, P. Muller and F. A. dʹAvitaya, Step‐driven
molecular adsorption of Sb on Si(111), Surface Science, 395, 317‐325, 1998
[107] T. Iwasaki, Molecular dynamics study of adhesion strength and diffusion at
interfaces between interconnect materials and underlay materials,
Computational Mechanics, 25, 78‐86, 2000
[108] J. M. Haile, Molecular Dynamics Simulation, New York: John Wiley & Sons,
1992
[109] D. C. Rapaport, The Art of Molecular Dynamics Simulation, London:
Cambridge University Press, 1997
[110] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic
Press, San Diego, 1996
[111] E. C. Cooney, D. C. Strippe, J. W. Korejwa, A. H. Simon and C. Uzoh, Effects
of collimator aspects ratio and deposition temperature on copper sputtered
seedlayers, Journal of Vacuum Science & Technology A‐Vacuum Surfaces
and Films, 17, 1898‐1903, 1999
[112] C. A. Nichols, S. M. Rossnagel and S. Hamaguchi, Ionized physical vapordeposition of Cu for high aspect ratio damascene trench fill applications,
Journal of Vacuum Science & Technology B, 14, 3270‐3275, 1996
[113] S. M. Rossnagel, Filling dual damascene interconnect structures with alcu
and cu using ionized magnetron deposition, Journal of Vacuum Science &
Technology B, 13, 125‐129, 1995
[114] S. Hamaguchi and S. M. Rossnagel, Simulations of trench‐filling profiles
under ionized magnetron sputter metal‐deposition, Journal of Vacuum
Science & Technology B, 13, 183‐191, 1995
[115] M. A. Vyvoda, C. F. Abrams and D. B. Grave, Feature evolution simulations
of copper seed layer deposition using atomic‐level particle scattering
information, IEEE Transactions on Plasma Science, 27, 1433, 1999
[116] F. Caignet, S. Delmas‐Bendhia and E. Sicard, The challenge of signal
integrity in deep‐submicrometer CMOS technology, Proceedings of the IEEE,
89, 556‐573, 2001
[117] J. D. Kress, D. E. Hanson, A. F. Voter, C. L. Liu, X. Y. Liu and D. G. Coronell,
Molecular dynamics simulation of Cu and Ar ion sputtering of Cu (111)
surfaces, Journal of Vacuum Science & Technology A‐Vacuum Surfaces and
Films, 17, 2819‐2825, 1999
[118] D. E. Hanson, A. F. Voter and J. D. Kress, Molecular dynamics simulation of
reactive ion etching of Si by energetic Cl ions, Journal of Applied Physics, 82,
3552‐3559, 1997
[119] K. H. Müller, Ion‐beam‐induced epitaxial vapor‐phase growth ‐ a moleculardynamics
study, Physical Review B, 35, 7906‐7913, 1987
[120] J. Torres, J. Palleau, F. Tardiff, H. Bernard, A. Beverina, P. Motte, R. Pantel
and M. Juhel, Overview of Cu contamination during integration in a dual
damascene architecture for sub‐quarter micron technology, Microelectronic
Engineering, 50, 425‐431, 2000
[121] W. Klement, R. H. Wilens and P. Duwez, Non‐crystalline Structure in
Solidified Gold? Silicon Alloys, Nature, 187, 869, 1960
[122] H. S. Chen and C. E. Miller, A rapid quenching technique for preparation of
thin uniform films of amorphous solids, Review of Scientific Instruments, 41,
1237, 1970[123] H. H. Liebermann and C. D. Graham, Production of amorphous alloy
ribbons and effects of apparatus parameters on ribbon dimensions, IEEE
Transactions on Magnetics, 12, 921‐923, 1976
[124] T. Haga and S. Suzuki, Single roll method for foil casting of the aluminum
alloy, Journal of Materials Processing Technology, 137, 86‐91, 2003
[125] M. C. Narasimhan, US Patent, 4, 221, 257, 1980
[126] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mg‐Cu‐Y
amorphous‐alloys with high mechanical strengths produced by a metallic
mold casting method, Materials Transactions JIM, 32, 609‐616, 1991
[127] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mg‐Cu‐Y bulk
amorphous‐alloys with high‐tensile strength produced by a high‐pressure
die‐casting method, Materials Transactions JIM, 33, 937‐945, 1992
[128] L. Liu, K. C. Chan, M. Sun and Q. Chen, The effect of the addition of Ta on
the structure, crystallization and mechanical properties of Zr‐Cu‐Ni‐Al‐Ta
bulk metallic glasses, Materials Science and Engineering A, 445‐446, 697‐706,
2007
[129] M. S. Daw and M. I. Baskes, Embedded‐atom method ‐ derivation and
application to impurities, surfaces, and other defects in metals, Physical
Review B, 29, 6443‐6453, 1984
[130] P. M. Morse, Diatomic molecules according to the wave mechanics II:
Vibrational levels, Physical Review, 34, 57‐64, 1929
[131] M. T. Robinson In: R. Behrisch, Editor, Sputtering by Particle Bombardment I,
Springer‐Verlag, Germany, 1981
[132] J. Tersoff, New empirical approach for the structure and energy of covalent
systems, Physical Review B, 37, 6991, 1988
[133] B. C. Bolding and H. C. Andersen, Interatomic potential for silicon clusters,
crystals, and surfaces, Physical Review B, 41, 568, 1990
[134] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating
the chemical vapor deposition of diamond films, Physical Review B, 42,
9458‐9471, 1990