| 研究生: |
泰普曼 Taipabu, Muhammad Ikhsan |
|---|---|
| 論文名稱: |
脂肪、油脂與油膩物(FOG)轉化為化學品之研究:能量、火用與經濟(3E)分析與最佳化 A Study of Fats, Oils, and Grease (FOG)-to-Chemicals Processes: Energy, Exergy and Economic (3E) Analysis and Optimization |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 生質柴油製造 、經濟可行性 、火用分析 、廢棄油脂(FOG) 、熱整合 、製程設計 、製程最佳化 |
| 外文關鍵詞: | Biodiesel production, Economic feasibility, Exergy analysis, Fats, oils, and grease (FOG), Heat integration, Process design, Process optimization |
| ORCID: | https://orcid.org/0000-0002-3886-9049 |
| ResearchGate: | https://www.researchgate.net/profile/Muhammad-Taipabu |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以廢棄油脂(FOG, Fats, Oils, and Grease)為原料生產生質柴油及高附加價值化學品之製程設計、最佳化與永續性分析。研究建立五種替代製程方案,並利用 Aspen Plus 模擬與經驗證的動力學模型,評估以均相與非均相觸媒進行的兩步酯化與酯交換反應。結果顯示,方案三雖需較高的再沸器與冷凝器熱負荷,但可簡化生質柴油與觸媒的分離程序;而方案五則能降低再沸器熱負荷達 22.3%,同時回收甘油與 K₂HPO₄作為副產品,並生成 205 kmol/h 的再利用水,達到無廢水排放的目標。透過反應曲面法(RSM)求得最佳操作條件,在 CSTR-1 與 CSTR-2 中分別達到 94% 的 OLAC 轉化率與 99.8% 的 TRIOL 轉化率。結合甘油蒸氣重組(GSR)與尿素合成後,建立了多聯產途徑,顯著提升了能源與碳效益。在最佳 GSR 操作條件下(H₂O/GLY = 6.01、775 °C、1.64 atm),可達到 99.95% 的甘油轉化率與 70.4% 的冷氣體效率。在能量整合部分,方案二利用夾點法(pinch analysis)進行熱整合,減少熱、冷公用能需求 45.7–71.8%;而方案三結合聯合循環發電系統後,可實現 89–93% 的二氧化碳減量。3E(能源、火用、經濟)分析結果證實,大型且經熱整合的製程最具競爭力。熱整合使公用能效率提升 40–65%,整體火用效率達 86.4%,其中 GSR 單元的火用破壞最大(約佔 30%)。在經濟分析方面,原料成本為主要營運支出來源(約 4.15–4.23 億美元/噸)。小型廠(≤100 kton/y)因具高單位生產成本(BBP = 1306–2004 USD/ton)、低投資報酬率(ARR ≤ 96%)、長回收期(PBP = 17–34 年)而缺乏競爭力;相對地,大型廠(≥500 kton/y)可達高投資報酬率(ARR = 186–320%)、低生產成本(BBP = 638–749 USD/ton),且回收期僅 3–5 年,顯示其在經濟與永續性上的顯著優勢。
This study investigates the process design, optimization, and sustainability of biodiesel and value-added chemical production from waste fats, oils, and grease (FOG) through five alternative process schemes. Aspen Plus simulations with validated kinetic models were employed to evaluate two-step esterification and transesterification using homogeneous and heterogeneous catalysts. Among the designs, Scheme-3 required higher reboiler and condenser duties but enabled simpler biodiesel–catalyst separation, while Scheme-5 reduced reboiler duty by 22.3%, recovered glycerol and K₂HPO₄ as byproducts, and generated 205 kmol/h of recycled water without wastewater discharge. Optimal operating conditions determined by response surface methodology achieved 94% conversion of OLAC and 99.8% conversion of TRIOL in CSTR-1 and CSTR-2, respectively. Integration with glycerol steam reforming (GSR) and urea synthesis established polygeneration pathways with enhanced energy and carbon performance. At optimized GSR conditions (H₂O/GLY = 6.01, 775 °C, 1.64 atm), 99.95% glycerol conversion and 70.4% cold gas efficiency were achieved. Scheme-2, incorporating pinch-based heat integration, reduced hot and cold utility requirements by 45.7–71.8%, while Scheme-3, coupled with combined cycle power generation, achieved the highest CO₂ reduction (89–93%). The 3E (Energy, Exergy, and Economic) analysis confirmed that large-scale, heat-integrated processes are the most competitive. Heat integration improved utility efficiency by 40–65%, overall exergy efficiency reached 86.4%, and the GSR unit contributed the largest exergy destruction (~30%). Economically, feedstock dominated total operating cost (~415–423 million USD/ton). Small plants (≤100 kton/y) were uncompetitive, with high BBPs (1306–2004 USD/ton), low ARR (≤96%), and long PBPs (17–34 years). In contrast, large-scale facilities (≥500 kton/y) achieved high ARR (186–320%), low BBPs (638–749 USD/ton) compared to conventional diesel price with short PBPs of 3–5 years.
[1] BP Energy Outlook, 2018 BP Energy Outlook 2018 BP Energy Outlook, (2018) 125. https://doi.org/10.1088/1757-899X/342/1/012091.
[2] V. Karthickeyan, S. Thiyagarajan, B. Ashok, V. Edwin Geo, A.K. Azad, Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis, Energy Convers. Manag. 205 (2020) 112334. https://doi.org/10.1016/j.enconman.2019.112334.
[3] A.O. Esan, A.D. Adeyemi, S. Ganesan, A review on the recent application of dimethyl carbonate in sustainable biodiesel production, J. Clean. Prod. 257 (2020) 120561. https://doi.org/10.1016/j.jclepro.2020.120561.
[4] S. Skarlis, E. Kondili, J.K. Kaldellis, Small-scale biodiesel production economics: A case study focus on Crete Island, J. Clean. Prod. 20 (2012) 20–26. https://doi.org/10.1016/j.jclepro.2011.08.011.
[5] J.M. Fonseca, J.G. Teleken, V. de Cinque Almeida, C. da Silva, Biodiesel from waste frying oils: Methods of production and purification, Energy Convers. Manag. 184 (2019) 205–218. https://doi.org/10.1016/j.enconman.2019.01.061.
[6] R. Chamola, M.F. Khan, A. Raj, M. Verma, S. Jain, Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH, Fuel. 239 (2019) 511–520. https://doi.org/10.1016/j.fuel.2018.11.038.
[7] J. Vinoth Arul Raj, B. Bharathiraja, B. Vijayakumar, S. Arokiyaraj, J. Iyyappan, R. Praveen Kumar, Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst, Bioresour. Technol. 282 (2019) 348–352. https://doi.org/10.1016/j.biortech.2019.03.030.
[8] J. Gardy, A. Osatiashtiani, O. Céspedes, A. Hassanpour, X. Lai, A.F. Lee, K. Wilson, M. Rehan, A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil, Appl. Catal. B Environ. 234 (2018) 268–278. https://doi.org/10.1016/j.apcatb.2018.04.046.
[9] N.N. Tran, E.J. McMurchie, Y. Ngothai, Biodiesel Production from Recycled Grease Trap Waste: A Case Study in South Australia. Part 1: The Pre-Treatment of High Free Fatty Acid Feedstock, ChemistrySelect. 3 (2018) 2509–2514. https://doi.org/10.1002/slct.201800065.
[10] S. Nomanbhay, R. Hussein, M.Y. Ong, Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review, Green Chem. Lett. Rev. 11 (2018) 135–157. https://doi.org/10.1080/17518253.2018.1444795.
[11] I. LCM, Glycerine Report - Supply, demand & pricing in volatile markets, New York, 2020. https://www.lmc.co.uk/reports/glycerine-glycerol-report/.
[12] H.W. Tan, A.R. Abdul Aziz, M.K. Aroua, Glycerol production and its applications as a raw material: A review, Renew. Sustain. Energy Rev. 27 (2013) 118–127. https://doi.org/10.1016/j.rser.2013.06.035.
[13] N. nan Boon-anuwat, W. Kiatkittipong, F. Aiouache, S. Assabumrungrat, Process design of continuous biodiesel production by reactive distillation: Comparison between homogeneous and heterogeneous catalysts, Chem. Eng. Process. Process Intensif. 92 (2015) 33–44. https://doi.org/10.1016/j.cep.2015.03.025.
[14] E.G. Al-Sakkari, O.M. Abdeldayem, S.T. El-Sheltawy, M.F. Abadir, A. Soliman, E.R. Rene, I. Ismail, Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study, Fuel. 279 (2020) 1–11. https://doi.org/10.1016/j.fuel.2020.118519.
[15] A.A. Albuquerque, F.T.T. Ng, L. Danielski, L. Stragevitch, Phase equilibrium modeling in biodiesel production by reactive distillation, Fuel. 271 (2020) 117688. https://doi.org/10.1016/j.fuel.2020.117688.
[16] A.J. Dijkstra, Vegetable Oils: Composition and Analysis, 1st ed., Elsevier Ltd., 2015. https://doi.org/10.1016/B978-0-12-384947-2.00708-X.
[17] A.E.F. Abomohra, M. Elsayed, S. Esakkimuthu, M. El-Sheekh, D. Hanelt, Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives, Prog. Energy Combust. Sci. 81 (2020) 100868. https://doi.org/10.1016/j.pecs.2020.100868.
[18] D.M.N. Del Mundo, M. Sutheerawattananonda, Influence of fat and oil type on the yield, physico-chemical properties, and microstructure of fat, oil, and grease (FOG) deposits, Water Res. 124 (2017) 308–319. https://doi.org/10.1016/j.watres.2017.07.047.
[19] J.B. Williams, C. Clarkson, C. Mant, A. Drinkwater, E. May, Fat, oil and grease deposits in sewers: Characterisation of deposits and formation mechanisms, Water Res. 46 (2012) 6319–6328. https://doi.org/10.1016/j.watres.2012.09.002.
[20] J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, M. Rehan, Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst, Appl. Catal. B Environ. 207 (2017) 297–310. https://doi.org/10.1016/j.apcatb.2017.01.080.
[21] J.P. Oliveira, P.W.P. Antunes, T.Z. Mordente, A.R. Santos, L.M. Pinotti, S.T.A. Cassini, Biodiesel production from scum of grease traps and sludge from septic tanks, Clean Technol. Environ. Policy. 19 (2017) 1231–1237. https://doi.org/10.1007/s10098-016-1308-7.
[22] G.C. Díaz, N. de la C.O. Tapanes, L.D.T. Câmara, D.A.G. Aranda, Glycerol conversion in the experimental study of catalytic hydrolysis of triglycerides for fatty acids production using Ni or Pd on Al2O3 or SiO2, Renew. Energy. 64 (2014) 113–122. https://doi.org/10.1016/j.renene.2013.11.006.
[23] K. Ngaosuwan, E. Lotero, K. Suwannakarn, J.G. Goodwin, P. Praserthdam, Hydrolysis of triglycerides using solid acid catalysts, Ind. Eng. Chem. Res. 48 (2009) 4757–4767. https://doi.org/10.1021/ie8013988.
[24] N.N. Tran, E.J. McMurchie, Y. Ngothai, Biodiesel Production from Recycled Grease Trap Waste: A Case Study in South Australia. Part 2: Optimization of The Transesterification Process, ChemistrySelect. 3 (2018) 3626–3631. https://doi.org/10.1002/slct.201800064.
[25] M. Balat, H. Balat, Progress in biodiesel processing, Appl. Energy. 87 (2010) 1815–1835. https://doi.org/10.1016/j.apenergy.2010.01.012.
[26] D.L. Manuale, G.C. Torres, C.R. Vera, J.C. Yori, Study of an energy-integrated biodiesel production process using supercritical methanol and a low-cost feedstock, Fuel Process. Technol. 140 (2015) 252–261. https://doi.org/10.1016/j.fuproc.2015.08.026.
[27] I. Ambat, V. Srivastava, M. Sillanpää, Recent advancement in biodiesel production methodologies using various feedstock: A review, Renew. Sustain. Energy Rev. 90 (2018) 356–369. https://doi.org/10.1016/j.rser.2018.03.069.
[28] E.F. Aransiola, T. V. Ojumu, O.O. Oyekola, T.F. Madzimbamuto, D.I.O. Ikhu-Omoregbe, A review of current technology for biodiesel production: State of the art, Biomass and Bioenergy. 61 (2014) 276–297. https://doi.org/10.1016/j.biombioe.2013.11.014.
[29] S. Demirel-Gu¨len, M. Lucas, P. Claus, Liquid phase oxidation of glycerol over carbon supported gold catalysts, CatalystisToday. 102–103 (2005) 166–172. https://doi.org/10.1016/j.cattod.2005.02.033.
[30] X. Fan, R. Burton, Y. Zhou, Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals - Mini review, Open Fuels Energy Sci. J. 3 (2010) 17–22. https://doi.org/10.2174/1876973X01003010017.
[31] A. Alhanash, E.F. Kozhevnikova, I. V. Kozhevnikov, Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt, Appl. Catal. A Gen. 378 (2010) 11–18. https://doi.org/10.1016/j.apcata.2010.01.043.
[32] B. Katryniok, S. Paul, V. Bellière-Baca, P. Rey, F. Dumeignil, Glycerol dehydration to acrolein in the context of new uses of glycerol, Green Chem. 12 (2010) 2079–2098. https://doi.org/10.1039/c0gc00307g.
[33] G. Garcia, E. Arriola, W.H. Chen, M.D. De Luna, A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability, Energy. 217 (2021) 119384. https://doi.org/10.1016/j.energy.2020.119384.
[34] F.J. Lozano, R. Lozano, Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production, J. Clean. Prod. 172 (2018) 4162–4169. https://doi.org/10.1016/j.jclepro.2017.01.037.
[35] H. Zhou, Y. Ma, Q. Yang, D. Wang, H. Li, G. Li, Y. Yang, Z. Fan, D. Ji, N. Li, D. Zhang, A new scheme for ammonia and fertilizer generation by coal direct chemical looping hydrogen process: Concept design, parameter optimization, and performance analysis, J. Clean. Prod. 362 (2022) 132445. https://doi.org/10.1016/j.jclepro.2022.132445.
[36] H. Zhang, L. Wang, J. Van herle, F. Maréchal, U. Desideri, Techno-economic comparison of 100% renewable urea production processes, Appl. Energy. 284 (2021). https://doi.org/10.1016/j.apenergy.2020.116401.
[37] N. Boz, N. Degirmenbasi, D.M. Kalyon, Esterification and transesterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts, Appl. Catal. B Environ. 165 (2015) 723–730. https://doi.org/10.1016/j.apcatb.2014.10.079.
[38] R. Abd Rabu, I. Janajreh, D. Honnery, Transesterification of waste cooking oil: Process optimization and conversion rate evaluation, Energy Convers. Manag. 65 (2013) 764–769. https://doi.org/10.1016/j.enconman.2012.02.031.
[39] G.L. Maddikeri, A.B. Pandit, P.R. Gogate, Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production, Fuel Process. Technol. 116 (2013) 241–249. https://doi.org/10.1016/j.fuproc.2013.07.004.
[40] P.D. Luu, N. Takenaka, B. Van Luu, L.N. Pham, K. Imamura, Y. Maeda, Co-solvent method produce biodiesel form waste cooking oil with small pilot plant, Energy Procedia. 61 (2014) 2822–2832. https://doi.org/10.1016/j.egypro.2014.12.303.
[41] A. Bilgin, M. Gülüm, İ. Koyuncuoglu, E. Nac, A. Cakmak, Determination of Transesterification Reaction Parameters Giving the Lowest Viscosity Waste Cooking Oil Biodiesel, Procedia - Soc. Behav. Sci. 195 (2015) 2492–2500. https://doi.org/10.1016/j.sbspro.2015.06.318.
[42] H. Zhang, F. Tian, L. Xu, R. Peng, Y. Li, J. Deng, Batch and continuous esterification for the direct synthesis of high qualified biodiesel from waste cooking oils (WCO) with Amberlyst-15/Poly (vinyl alcohol) membrane as a bifunctional catalyst, Chem. Eng. J. 388 (2020) 124214. https://doi.org/10.1016/j.cej.2020.124214.
[43] N.Y. Yahya, N. Ngadi, M. Jusoh, N.A.A. Halim, Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel, Energy Convers. Manag. 129 (2016) 275–283. https://doi.org/10.1016/j.enconman.2016.10.037.
[44] M. Yadav, V. Singh, Y.C. Sharma, Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: Process optimization and homogeneity study of catalyst, Energy Convers. Manag. 148 (2017) 1438–1452. https://doi.org/10.1016/j.enconman.2017.06.024.
[45] J.M. Jung, J.I. Oh, K. Baek, J. Lee, E.E. Kwon, Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst, Energy Convers. Manag. 165 (2018) 628–633. https://doi.org/10.1016/j.enconman.2018.03.096.
[46] A. Talebian-Kiakalaieh, N.A.S. Amin, A. Zarei, I. Noshadi, Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model, Appl. Energy. 102 (2013) 283–292. https://doi.org/10.1016/j.apenergy.2012.07.018.
[47] F.H. Alhassan, U. Rashid, Y.H. Taufiq-Yap, Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42-/ZrO2 nanoparticle solid catalyst, Fuel. 142 (2015) 38–45. https://doi.org/10.1016/j.fuel.2014.10.038.
[48] T.T.V. Tran, S. Kaiprommarat, S. Kongparakul, P. Reubroycharoen, G. Guan, M.H. Nguyen, C. Samart, Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst, Waste Manag. 52 (2016) 367–374. https://doi.org/10.1016/j.wasman.2016.03.053.
[49] N. Mansir, S.H. Teo, I. Rabiu, Y.H. Taufiq-Yap, Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst, Chem. Eng. J. 347 (2018) 137–144. https://doi.org/10.1016/j.cej.2018.04.034.
[50] J. Ahmad, U. Rashid, F. Patuzzi, M. Baratieri, Y.H. Taufiq-Yap, Synthesis of char-based acidic catalyst for methanolysis of waste cooking oil: An insight into a possible valorization pathway for the solid by-product of gasification, Energy Convers. Manag. 158 (2018) 186–192. https://doi.org/10.1016/j.enconman.2017.12.059.
[51] X. Liang, Novel acidic ionic liquid polymer for biodiesel synthesis from waste oils, Appl. Catal. A Gen. 455 (2013) 206–210. https://doi.org/10.1016/j.apcata.2013.01.036.
[52] F.A. Yassin, F.Y. El Kady, H.S. Ahmed, L.K. Mohamed, S.A. Shaban, A.K. Elfadaly, Highly effective ionic liquids for biodiesel production from waste vegetable oils, Egypt. J. Pet. 24 (2015) 103–111. https://doi.org/10.1016/j.ejpe.2015.02.011.
[53] M.I. Jahirul, W. Koh, R.J. Brown, W. Senadeera, I. O’Hara, L. Moghaddam, Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM), Energies. 7 (2014) 5317–5331. https://doi.org/10.3390/en7085317.
[54] J. Li, X. Peng, M. Luo, C.J. Zhao, C.B. Gu, Y.G. Zu, Y.J. Fu, Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted-Lewis acidic ionic liquid, Appl. Energy. 115 (2014) 438–444. https://doi.org/10.1016/j.apenergy.2013.10.025.
[55] J. Folaranmi, Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst, J. Pet. Eng. 2013 (2013) 1–6. https://doi.org/10.1155/2013/956479.
[56] N. Petchsoongsakul, K. Ngaosuwan, W. Kiatkittipong, F. Aiouache, S. Assabumrungrat, Process design of biodiesel production: Hybridization of ester-and transesterification in a single reactive distillation, Energy Convers. Manag. 153 (2017) 493–503. https://doi.org/10.1016/j.enconman.2017.10.013.
[57] A. Sharma, P. Kodgire, S.S. Kachhwaha, Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: Optimization and kinetic modeling, Renew. Sustain. Energy Rev. 116 (2019) 109394. https://doi.org/10.1016/j.rser.2019.109394.
[58] H.K. Reddy, T. Muppaneni, P.D. Patil, S. Ponnusamy, P. Cooke, T. Schaub, S. Deng, Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions, Fuel. 115 (2014) 720–726. https://doi.org/10.1016/j.fuel.2013.07.090.
[59] J. Huang, J. Xia, W. Jiang, Y. Li, J. Li, Biodiesel production from microalgae oil catalyzed by a recombinant lipase, Bioresour. Technol. 180 (2015) 47–53. https://doi.org/10.1016/j.biortech.2014.12.072.
[60] S.H. Teo, A. Islam, Y.H. Taufiq-Yap, Algae derived biodiesel using nanocatalytic transesterification process, Institution of Chemical Engineers, 2016. https://doi.org/10.1016/j.cherd.2016.04.012.
[61] Y.M. Dai, K.T. Chen, C.C. Chen, Study of the microwave lipid extraction from microalgae for biodiesel production, Chem. Eng. J. 250 (2014) 267–273. https://doi.org/10.1016/j.cej.2014.04.031.
[62] J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil, Appl. Catal. A Gen. 527 (2016) 81–95. https://doi.org/10.1016/j.apcata.2016.08.031.
[63] K. Tahvildari, Y.N. Anaraki, R. Fazaeli, S. Mirpanji, E. Delrish, The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil, J. Environ. Heal. Sci. Eng. 13 (2015) 1–9. https://doi.org/10.1186/s40201-015-0226-7.
[64] D. Unlu, N.D. Hilmioglu, Application of aspen plus to renewable hydrogen production from glycerol by steam reforming, Int. J. Hydrogen Energy. 45 (2020) 3509–3515. https://doi.org/10.1016/j.ijhydene.2019.02.106.
[65] B. Dou, L. Zhao, H. Zhang, K. Wu, H. Zhang, Renewable hydrogen production from chemical looping steam reforming of biodiesel byproduct glycerol by mesoporous oxygen carriers, Chem. Eng. J. (2020) 127612. https://doi.org/10.1016/j.cej.2020.127612.
[66] A. Zarei Senseni, F. Meshkani, S.M. Seyed Fattahi, M. Rezaei, A theoretical and experimental study of glycerol steam reforming over Rh/MgAl2O4 catalysts, Energy Convers. Manag. 154 (2017) 127–137. https://doi.org/10.1016/j.enconman.2017.10.033.
[67] K. Ghasemzadeh, M. Ghahremani, T.Y. Amiri, A. Basile, Performance evaluation of Pd–Ag membrane reactor in glycerol steam reforming process: Development of the CFD model, Int. J. Hydrogen Energy. 44 (2019) 1000–1009. https://doi.org/10.1016/j.ijhydene.2018.11.086.
[68] A. Ismaila, H. Chen, Y. Shao, S. Xu, Y. Jiao, X. Chen, X. Gao, X. Fan, Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst, Chinese J. Chem. Eng. 28 (2020) 2328–2336. https://doi.org/10.1016/j.cjche.2020.06.025.
[69] N.D. Charisiou, C. Italiano, L. Pino, V. Sebastian, A. Vita, M.A. Goula, Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3, Renew. Energy. 162 (2020) 908–925. https://doi.org/10.1016/j.renene.2020.08.037.
[70] E. Dahdah, J. Estephane, C. Gennequin, A. Aboukaïs, S. Aouad, E. Abi-Aad, Effect of La promotion on Ni/Mg-Al hydrotalcite derived catalysts for glycerol steam reforming, J. Environ. Chem. Eng. 8 (2020). https://doi.org/10.1016/j.jece.2020.104228.
[71] A.J. Reynoso, U. Iriarte-Velasco, M.A. Gutiérrez-Ortiz, J.L. Ayastuy, Highly stable Pt/CoAl2O4 catalysts in Aqueous-Phase Reforming of glycerol, Catal. Today. (2020) 0–1. https://doi.org/10.1016/j.cattod.2020.03.039.
[72] N.A. Roslan, S.Z. Abidin, N.S. Nasir, S.Y. Chin, Y.H. Taufiq-Yap, Extracted γ-Al2O3 from aluminum dross as a catalyst support for glycerol dry reforming reaction, Mater. Today Proc. 42 (2021) 63–68. https://doi.org/10.1016/j.matpr.2020.09.390.
[73] I. Adánez-Rubio, J.A.C. Ruiz, F. García-Labiano, L.F. de Diego, J. Adánez, Use of bio-glycerol for the production of synthesis gas by chemical looping reforming, Fuel. 288 (2021) 119578. https://doi.org/10.1016/j.fuel.2020.119578.
[74] A. Khazayialiabad, D. Iranshahi, Inherent CO 2 Capture and H 2 Production Enhancement in a New Glycerol Steam Reformer Coupled with Chemical Looping Combustion, Enegy Fuel. 35 (2021) 5049–5063. https://doi.org/10.1021/acs.energyfuels.0c02664.
[75] S. Veiga, R. Faccio, M. Romero, J. Bussi, Utilization of waste crude glycerol for hydrogen production via steam reforming over Ni–La–Zr catalysts, Biomass and Bioenergy. 135 (2020) 105508. https://doi.org/10.1016/j.biombioe.2020.105508.
[76] P. Feng, K. Huang, Q. Xu, W. Qi, S. Xin, T. Wei, L. Liao, Y. Yan, Ni supported on the CaO modified attapulgite as catalysts for hydrogen production from glycerol steam reforming, Int. J. Hydrogen Energy. 45 (2020) 8223–8233. https://doi.org/10.1016/j.ijhydene.2020.01.013.
[77] M. Chen, Z. Zhou, Y. Wang, T. Liang, X. Li, Z. Yang, M. Chen, J. Wang, Effects of attapulgite-supported transition metals catalysts on glycerol steam reforming for hydrogen production, Int. J. Hydrogen Energy. 43 (2018) 20451–20464. https://doi.org/10.1016/j.ijhydene.2018.09.122.
[78] F. Pompeo, G. Santori, N.N. Nichio, Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts, Int. J. Hydrogen Energy. 35 (2010) 8912–8920. https://doi.org/10.1016/j.ijhydene.2010.06.011.
[79] A. Tamošiūnas, P. Valatkevičius, D. Gimžauskaitė, V. Valinčius, M. Jeguirim, Glycerol steam reforming for hydrogen and synthesis gas production, Int. J. Hydrogen Energy. 42 (2017) 12896–12904. https://doi.org/10.1016/j.ijhydene.2016.12.071.
[80] Z.Y. Huang, C.H. Xu, J. Meng, C.F. Zheng, H.W. Xiao, J. Chen, Y.X. Zhang, Glycerol steam reforming to syngas over Ni-based catalysts on commercial Linde-type 5A zeolite modified by metal oxides, J. Environ. Chem. Eng. 2 (2014) 598–604. https://doi.org/10.1016/j.jece.2013.10.015.
[81] C. Huang, C. Xu, B. Wang, X. Hu, J. Li, J. Liu, J. Liu, C. Li, High production of syngas from catalytic steam reforming of biomass glycerol in the presence of methane, Biomass and Bioenergy. 119 (2018) 173–178. https://doi.org/10.1016/j.biombioe.2018.05.006.
[82] L. Pastor-Pérez, A. Sepúlveda-Escribano, Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content, Fuel. 194 (2017) 222–228. https://doi.org/10.1016/j.fuel.2017.01.023.
[83] F. Pompeo, G.F. Santori, N.N. Nichio, Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts, Catal. Today. 172 (2011) 183–188. https://doi.org/10.1016/j.cattod.2011.05.001.
[84] T. Papalas, A.N. Antzaras, A.A. Lemonidou, Intensified steam methane reforming coupled with Ca-Ni looping in a dual fluidized bed reactor system: A conceptual design, Chem. Eng. J. 382 (2020) 122993. https://doi.org/10.1016/j.cej.2019.122993.
[85] A. Beretta, G. Groppi, C. Ribani, G. Fares, C. Tregambe, Development of a catalytic fuel processor for a 10 kw combined heat and power system: Experimental and modeling analysis of the steam reforming unit, ChemEngineering. 2 (2018) 1–19. https://doi.org/10.3390/chemengineering2010005.
[86] M. Wang, X. Tan, J. Motuzas, J. Li, S. Liu, Hydrogen production by methane steam reforming using metallic nickel hollow fiber membranes, J. Memb. Sci. 620 (2021) 118909. https://doi.org/10.1016/j.memsci.2020.118909.
[87] X. Shi, F. Wang, Z. Cheng, H. Liang, Y. Dong, X. Chen, Numerical analysis of the biomimetic leaf-type hierarchical porous structure to improve the energy storage efficiency of solar driven steam methane reforming, Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.02.171.
[88] D. Pashchenko, I. Makarov, Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis, Energy. 222 (2021) 119993. https://doi.org/10.1016/j.energy.2021.119993.
[89] R. Carapellucci, L. Giordano, Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis, J. Power Sources. 469 (2020) 228391. https://doi.org/10.1016/j.jpowsour.2020.228391.
[90] C. Dang, J. Long, H. Li, W. Cai, H. Yu, Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate, Chem. Eng. Sci. 230 (2021) 116226. https://doi.org/10.1016/j.ces.2020.116226.
[91] A.M. Kovalskii, A.T. Matveev, Z.I. Popov, I.N. Volkov, E. V. Sukhanova, A.A. Lytkina, A.B. Yaroslavtsev, A.S. Konopatsky, D. V. Leybo, A. V. Bondarev, I. V. Shchetinin, K.L. Firestein, D. V. Shtansky, D. V. Golberg, (Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation, Chem. Eng. J. 395 (2020) 125109. https://doi.org/10.1016/j.cej.2020.125109.
[92] M.R. Talaghat, N. Naamaki, Mathematical modeling of hydrogen production using methanol steam reforming in the coupled membrane reactor when the output materials of the reformer section is used as feed for the combustion section, Int. J. Hydrogen Energy. 46 (2021) 2282–2295. https://doi.org/10.1016/j.ijhydene.2020.10.128.
[93] Y. Wang, Q. Wu, D. Mei, Y. Wang, Development of highly efficient methanol steam reforming system for hydrogen production and supply for a low temperature proton exchange membrane fuel cell, Int. J. Hydrogen Energy. 45 (2020) 25317–25327. https://doi.org/10.1016/j.ijhydene.2020.06.285.
[94] R. Zhang, C. Huang, L. Zong, K. Lu, X. Wang, J. Cai, Hydrogen production from methanol steam reforming over TiO2 and CeO2 pillared clay supported Au catalysts, Appl. Sci. 8 (2018) 1–12. https://doi.org/10.3390/app8020176.
[95] F. Joda, F. Ahmadi, Exergoeconomic analysis of conventional and using reactive distillation biodiesel production scenarios thermally integrated with a combined power plant, Renew. Energy. 132 (2019) 898–910. https://doi.org/10.1016/j.renene.2018.08.052.
[96] J. Mercy Nisha Pauline, R. Sivaramakrishnan, A. Pugazhendhi, T. Anbarasan, A. Achary, Transesterification kinetics of waste cooking oil and its diesel engine performance, Fuel. 285 (2021) 119108. https://doi.org/10.1016/j.fuel.2020.119108.
[97] D. Singh, D. Sharma, S.L. Soni, S. Sharma, D. Kumari, Chemical compositions, properties, and standards for different generation biodiesels: A review, Fuel. 253 (2019) 60–71. https://doi.org/10.1016/j.fuel.2019.04.174.
[98] N.S. El-Gendy, A.A.S.A. El-Gharabawy, S.S. Abu Amr, F.H. Ashour, Response surface optimization of an alkaline transesterification of waste cooking oil, Int. J. ChemTech Res. 8 (2015) 385–398.
[99] F. Kesserwan, M.N. Ahmad, M. Khalil, H. El-Rassy, Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production, Chem. Eng. J. 385 (2020) 123834. https://doi.org/10.1016/j.cej.2019.123834.
[100] H. Li, Y. Wang, X. Ma, Z. Wu, P. Cui, W. Lu, F. Liu, H. Chu, Y. Wang, A novel magnetic CaO-based catalyst synthesis and characterization: Enhancing the catalytic activity and stability of CaO for biodiesel production, Chem. Eng. J. 391 (2020) 123549. https://doi.org/10.1016/j.cej.2019.123549.
[101] M. Feyzi, L. Norouzi, Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production, Renew. Energy. 94 (2016) 579–586. https://doi.org/10.1016/j.renene.2016.03.086.
[102] E.S. Pérez-Cisneros, X. Mena-Espino, V. Rodríguez-López, M. Sales-Cruz, T. Viveros-García, R. Lobo-Oehmichen, An integrated reactive distillation process for biodiesel production, Comput. Chem. Eng. 91 (2016) 233–246. https://doi.org/10.1016/j.compchemeng.2016.01.008.
[103] F.I. Gomez-Castro, V. Rico-Ramirez, J.G. Segovia-Hernandez, S. Hernandez-Castro, M.M. El-Halwagi, Simulation study on biodiesel production by reactive distillation with methanol at high pressure and temperature: Impact on costs and pollutant emissions, Comput. Chem. Eng. 52 (2013) 204–215. https://doi.org/10.1016/j.compchemeng.2013.01.007.
[104] C. Mueanmas, K. Prasertsit, C. Tongurai, Transesterification of triolein with methanol in reactive distillation column: Simulation studies, Int. J. Chem. React. Eng. 8 (2010). https://doi.org/10.2202/1542-6580.2314.
[105] A. Casas, J.F. Rodríguez, G.L. Del Peso, R. Rodríguez, G. Vicente, A. Carrero, Liquid-liquid phase equilibria for soybean oil methanolysis: Experimental, modeling, and data prediction, Ind. Eng. Chem. Res. 53 (2014) 3731–3736. https://doi.org/10.1021/ie403927c.
[106] P.C. Belting, J. Gmehling, R. Bölts, J. Rarey, R. Ceriani, O. Chiavone-Filho, A.J.A. Meirelles, Measurement, correlation and prediction of isothermal vapor-liquid equilibria of different systems containing vegetable oils, Fluid Phase Equilib. 395 (2015) 15–25. https://doi.org/10.1016/j.fluid.2015.03.009.
[107] D. Kusdiana, S. Saka, Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol, Fuel. 80 (2001) 693–698. https://doi.org/10.1016/S0016-2361(00)00140-X.
[108] M. Berrios, J. Siles, M.A. Martin, A. Martin, A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil, Fuel. 86 (2007) 2383–2388. https://doi.org/10.1016/j.fuel.2007.02.002.
[109] R. Tesser, L. Casale, D. Verde, M. Di Serio, E. Santacesaria, Kinetics and modeling of fatty acids esterification on acid exchange resins, Chem. Eng. J. 157 (2010) 539–550. https://doi.org/10.1016/j.cej.2009.12.050.
[110] D. Darnoko, M. Cheryan, Kinetics of palm oil transesterification in a batch reactor, JAOCS, J. Am. Oil Chem. Soc. 77 (2000) 1263–1267. https://doi.org/10.1007/s11746-000-0198-y.
[111] M. Athar, S. Zaidi, A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production, J. Environ. Chem. Eng. 8 (2020) 104523. https://doi.org/10.1016/j.jece.2020.104523.
[112] J.G. Veneral, D.L.R. Junior, M.A. Mazutti, F.A.P. Voll, L. Cardozo-Filho, M.L. Corazza, E.A. Silva, J.V. Oliveira, Thermophysical properties of biodiesel and related systems: Low-pressure vapor + liquid equilibrium of methyl/ethyl soybean biodiesel, J. Chem. Thermodyn. 64 (2013) 65–70. https://doi.org/10.1016/j.jct.2013.05.001.
[113] M.B. Oliveira, S.I. Miguel, A.J. Queimada, J.A.P. Coutinho, Phase equilibria of ester + alcohol systems and their description with the cubic-plus-association equation of state, Ind. Eng. Chem. Res. 49 (2010) 3452–3458. https://doi.org/10.1021/ie901470s.
[114] V.H. Álvarez, S. Mattedi, M. Iglesias, R. Gonzalez-Olmos, J.M. Resa, Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa, Phys. Chem. Liq. 49 (2011) 52–71. https://doi.org/10.1080/00319100903012403.
[115] J. Soujanya, B. Satyavathi, T.E. Vittal Prasad, Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures, J. Chem. Thermodyn. 42 (2010) 621–624. https://doi.org/10.1016/j.jct.2009.11.020.
[116] G.H. Eduljee, A.P. Boyes, Excess Gibbs Energy for Eight Oleic Acid-Solvent and Triolein-Solvent Mixtures at 318.15 K, J. Chem. Eng. Data. 26 (1981) 55–57. https://doi.org/10.1021/je00023a019.
[117] Z.-D.-D. Manel, A. Negadi, I. Mokbel, L. Negadi, (Vapor-liquid) equilibria and excess Gibbs free energy functions of (ethanol + glycerol), or (water + glycerol) binary mixtures at several temperatures, J. Chem. Thermodyn. 69 (2014) 165–171. https://doi.org/10.1016/j.jct.2013.09.046.
[118] C.W. Chiu, M.J. Goff, G.J. Suppes, Distribution of methanol and catalysts between biodiesel and glycerin phases, AIChE J. 51 (2005) 1274–1278. https://doi.org/10.1002/aic.10385.
[119] A.C. Dimian, G. Rothenberg, An effective modular process for biodiesel manufacturing using heterogeneous catalysis, Catal. Sci. Technol. 6 (2016) 6097–6108. https://doi.org/10.1039/c6cy00426a.
[120] N.A.A. Fatah, S. Triwahyono, A.A. Jalil, N. Salamun, C.R. Mamat, Z.A. Majid, n-Heptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC-1: Influence of phosphorus and optimization using response surface methodology (RSM), Chem. Eng. J. 314 (2017) 650–659. https://doi.org/10.1016/j.cej.2016.12.028.
[121] K. Ohtani, Bootstrapping R2 and adjusted R2 in regression analysis, Econ. Model. 17 (2000) 473–483. https://doi.org/10.1016/S0264-9993(99)00034-6.
[122] Y.S. Wee, H.A. Quazi, Development and validation of critical factors of environmental management, Ind. Manag. Data Syst. 105 (2005) 96–114. https://doi.org/10.1108/02635570510575216.
[123] M.I. Taipabu, K. Viswanathan, W. Wu, Z.K. Nagy, Production of renewable fuels and chemicals from fats , oils , and grease (FOG) using homogeneous and heterogeneous catalysts : Design , validation , and optimization, Chem. Eng. J. 424 (2021) 130199. https://doi.org/10.1016/j.cej.2021.130199.
[124] W. Wu, M. Ikhsan, W. Chang, K. Viswanathan, Y. Xie, P. Kuo, Economic dispatch of torre fi ed biomass polygeneration systems considering power / SNG grid demands, Renew. Energy. 196 (2022) 707–719. https://doi.org/10.1016/j.renene.2022.07.007.
[125] J. Xiao, Y. Peng, P. Bénard, R. Chahine, Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification, Int. J. Hydrogen Energy. 41 (2016) 8236–8245. https://doi.org/10.1016/j.ijhydene.2015.11.126.
[126] H. Ishaq, I. Dincer, Design and simulation of a new cascaded ammonia synthesis system driven by renewables, Sustain. Energy Technol. Assessments. 40 (2020) 100725. https://doi.org/10.1016/j.seta.2020.100725.
[127] A. Rozana, Steady State Modelling of Urea Synthesis Loop, University Teknology Petronas, 2007.
[128] B. Shi, W. Xu, E. Wu, W. Wu, P.C. Kuo, Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture, J. Clean. Prod. 195 (2018) 176–186. https://doi.org/10.1016/j.jclepro.2018.05.152.
[129] C. Wang, B. Dou, H. Chen, Y. Song, Y. Xu, X. Du, T. Luo, C. Tan, Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor, Chem. Eng. J. 220 (2013) 133–142. https://doi.org/10.1016/j.cej.2013.01.050.
[130] B. Dou, C. Wang, Y. Song, H. Chen, Y. Xu, Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol, Energy Convers. Manag. J. 78 (2014) 253–259. https://doi.org/10.1016/j.enconman.2013.10.067.
[131] D. Schmider, L. Maier, O. Deutschmann, Reaction Kinetics of CO and CO2Methanation over Nickel, Ind. Eng. Chem. Res. 60 (2021) 5792–5805. https://doi.org/10.1021/acs.iecr.1c00389.
[132] M.S. Macedo, M.A. Soria, L.M. Madeira, Process intensification for hydrogen production through glycerol steam reforming, Renew. Sustain. Energy Rev. 146 (2021) 111151. https://doi.org/10.1016/j.rser.2021.111151.
[133] C. Wang, C. Wang, B. Dou, H. Chen, Y. Song, Y. Xu, X. Du, T. Luo, Hydrogen production from steam reforming of glycerol by Ni–Mg–Al based catalysts in a fixed-bed reactor, 22 (2013) 133–142. https://doi.org/10.1016/j.cej.2013.01.050.
[134] D. Yao, H. Yang, H. Chen, P.T. Williams, Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics, Appl. Catal. B Environ. 239 (2018) 565–577. https://doi.org/10.1016/j.apcatb.2018.07.075.
[135] Y. Choi, H.G. Stenger, Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen, J. Power Sources. 124 (2003) 432–439. https://doi.org/10.1016/S0378-7753(03)00614-1.
[136] S. Rönsch, J. Köchermann, J. Schneider, S. Matthischke, Global Reaction Kinetics of CO and CO2 Methanation for Dynamic Process Modeling, Chem. Eng. Technol. 39 (2016) 208–218. https://doi.org/10.1002/ceat.201500327.
[137] Y. Wang, W. Fan, Y. Liu, Z. Zeng, X. Hao, M. Chang, C. Zhang, Y. Xu, H. Xiang, Y. Li, Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors, Chem. Eng. Process. Process Intensif. 47 (2008) 222–228. https://doi.org/10.1016/j.cep.2007.02.011.
[138] F. Cao, Y. Chen, F. Zhai, J. Li, J. Wang, X. Wang, S. Wang, W. Zhu, Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid, Biotechnol. Bioeng. 101 (2008) 93–100. https://doi.org/10.1002/bit.21879.
[139] M. Martín, I.E. Grossmann, Process optimization of FT-diesel production from lignocellulosic switchgrass, Ind. Eng. Chem. Res. 50 (2011) 13485–13499. https://doi.org/10.1021/ie201261t.
[140] A. Ismaila, X. Chen, X. Gao, X. Fan, Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure, Front. Chem. Sci. Eng. 15 (2021) 60–71. https://doi.org/10.1007/s11705-020-1975-0.
[141] M. Toledo, N. Ripoll, J. Céspedes, A. Zbogar-Rasic, N. Fedorova, V. Jovicic, A. Delgado, Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents, Energy Convers. Manag. 172 (2018) 381–390. https://doi.org/10.1016/j.enconman.2018.07.046.
[142] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev. 67 (2017) 597–611. https://doi.org/10.1016/j.rser.2016.09.044.
[143] C.R. Coronado, J.A. Carvalho, C.A. Quispe, C.R. Sotomonte, Ecological efficiency in glycerol combustion, Appl. Therm. Eng. 63 (2014) 97–104. https://doi.org/10.1016/j.applthermaleng.2013.11.004.
[144] P.C. Kuo, B. Illathukandy, W. Wu, J.S. Chang, Plasma gasification performances of various raw and torrefied biomass materials using different gasifying agents, Bioresour. Technol. 314 (2020). https://doi.org/10.1016/j.biortech.2020.123740.
[145] Q. Hu, Y. Dai, C.H. Wang, Steam co-gasification of horticultural waste and sewage sludge: Product distribution, synergistic analysis and optimization, Bioresour. Technol. 301 (2020) 122780. https://doi.org/10.1016/j.biortech.2020.122780.
[146] A. Żogała, Equilibrium Simulations of Coal Gasification – Factors Affecting Syngas Composition, J. Sustain. Min. 13 (2014) 30–38. https://doi.org/10.7424/jsm140205.
[147] P. Mojaver, S. Khalilarya, A. Chitsaz, Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system, Appl. Therm. Eng. 156 (2019) 627–639. https://doi.org/10.1016/j.applthermaleng.2019.04.104.
[148] R. Smith, Chemical Process Design and Integration, 2005.
[149] D. Mendes, A. Mendes, L.M. Madeira, A. Lulianelli, J.M. Sousa, A. Basile, The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors – a review, Asia-Pasific J. Chem. Eng. 5 (2010) 111–137. https://doi.org/10.1002/apj.364.
[150] A. Kramer, Advanced Gasifier and Water Gas Shift Technologies for Low Cost Coal Conversion to High Hydrogen Syngas, 2016.
[151] Y. Park, J.H. Kang, D.K. Moon, Y.S. Jo, C.H. Lee, Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture, Chem. Eng. J. 408 (2021) 127299. https://doi.org/10.1016/j.cej.2020.127299.
[152] M. Xu, H.C. Wu, Y.S. Lin, S. Deng, Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents, Chem. Eng. J. 354 (2018) 62–74. https://doi.org/10.1016/j.cej.2018.07.080.
[153] S. Ahn, Y.W. You, D.G. Lee, K.H. Kim, M. Oh, C.H. Lee, Layered two- and four-bed PSA processes for H2 recovery from coal gas, Chem. Eng. Sci. 68 (2012) 413–423. https://doi.org/10.1016/j.ces.2011.09.053.
[154] E. Khoramzadeh, M. Mofarahi, C.H. Lee, Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13X, 4A, 5A, and Beta, J. Chem. Eng. Data. 64 (2019) 5648–5664. https://doi.org/10.1021/acs.jced.9b00690.
[155] M. Mofarahi, F. Gholipour, Gas adsorption separation of CO2/CH4 system using zeolite 5A, Microporous Mesoporous Mater. 200 (2014) 1–10. https://doi.org/10.1016/j.micromeso.2014.08.022.
[156] S. Sircar, T.C. Golden, M.B. Rao, Activated carbon for gas separation and storage, Carbon N. Y. 34 (1996) 1–12. https://doi.org/10.1016/0008-6223(95)00128-X.
[157] X.X. Zhang, P. Xiao, C.Y. Sun, G.X. Luo, J. Ju, X.R. Wang, H.X. Wang, H. Yang, Optimal activated carbon for separation of CO2 from (H2 + CO2) gas mixture, Pet. Sci. 15 (2018) 625–633. https://doi.org/10.1007/s12182-018-0243-0.
[158] N. Bianco, A. Fragnito, M. Iasiello, G. Maria Mauro, A comprehensive approach for the multi-objective optimization of Heat Recovery Steam Generators to maximize cost-effectiveness and output power, Sustain. Energy Technol. Assessments. 45 (2021) 101162. https://doi.org/10.1016/j.seta.2021.101162.
[159] B. Chen, Q. Guo, Y. Chen, H. Sun, An economic dispatch model for combined heat and power systems considering the characteristics of heat recovery steam generators, Int. J. Electr. Power Energy Syst. 118 (2020) 105775. https://doi.org/10.1016/j.ijepes.2019.105775.
[160] M.J. Palys, A. McCormick, E.L. Cussler, P. Daoutidis, Modeling and optimal design of absorbent enhanced ammonia synthesis, Processes. 6 (2018). https://doi.org/10.3390/PR6070091.
[161] M.A. Soliman, Empirical modeling of urea synthesis chemical equilibria, Int. J. Innov. Technol. Explor. Eng. 8 (2019) 727–729. https://doi.org/10.35940/ijitee.L3024.1081219.
[162] X.P. Zhang, P.J. Yao, D. Wu, Y. Yuan, Simulation of urea reactor of industrial process, Adv. Fluid Mech. 29 (2001) 65–73.
[163] M. El Wajeh, A. Mhamdi, A. Mitsos, Optimal Flexible Operation of Electrified and Heat-Integrated Biodiesel Production, in: 12th IFAC Int. Symp. Adv. Control Chem. Process., Toronto, Canada, 2024.
[164] C. Song, G. Chen, N. Ji, Q. Liu, Y. Kansha, A. Tsutsumi, Bioresource Technology Biodiesel production process from microalgae oil by waste heat recovery and process integration, Bioresour. Technol. 193 (2015) 192–199. https://doi.org/10.1016/j.biortech.2015.06.116.
[165] O. Aboelazayem, M. Gadalla, B. Saha, An Experimental-Based Energy Integrated Process for Biodiesel Production from Waste Cooking Oil Using Supercritical Methanol, Chem. Eng. Trans. 61 (2017) 1645–1650. https://doi.org/10.3303/CET1761272.
[166] M. Mehrpooya, B. Ghorbani, H. Abedi, Biodiesel production integrated with glycerol steam reforming process, solid oxide fuel cell (SOFC) power plant, Energy Convers. Manag. 206 (2020) 112467. https://doi.org/10.1016/j.enconman.2020.112467.
[167] W.S. Lee, C.H. Lee, Dynamic modeling and machine learning of commercial-scale simulated moving bed chromatography for application to multi-component normal paraffin separation, Sep. Purif. Technol. 288 (2022). https://doi.org/10.1016/j.seppur.2022.120597.
[168] L. Mishra, A. Sinha, R. Gupta, Energy, exergy, economic and environmental (4E) analysis of greenhouse dryer in no-load condition, Sustain. Energy Technol. Assessments. 45 (2021) 101186. https://doi.org/10.1016/j.seta.2021.101186.
[169] M. Aghbashlo, M. Tabatabaei, S. Hosseinpour, Z. Khounani, Exergy-based sustainability analysis of a low power , high frequency piezo-based ultrasound reactor for rapid biodiesel production, 148 (2017) 759–769.
[170] G. Khoobbakht, K. Kheiralipour, H. Rasouli, M. Rafiee, M. Hadipour, M. Karimi, Experimental exergy analysis of transesterification in biodiesel production, Energy. 196 (2020). https://doi.org/10.1016/j.energy.2020.117092.
[171] A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Exergy analysis of polymer electrolyte fuel cell systems using methanol, J. Power Sources. 126 (2004) 34–40. https://doi.org/10.1016/j.jpowsour.2003.08.029.
[172] J. Szargut, Exergy Method: Technical and Ecological Applications, WIT Press, Gliwice, Poland, 2005.
[173] E. Sorguven, O. Mustafa, Thermodynamic assessment of algal biodiesel utilization, 35 (2010) 1956–1966. https://doi.org/10.1016/j.renene.2010.01.024.
[174] W. Wu, L. Zheng, B. Shi, P. Kuo, Energy and exergy analysis of MSW-based IGCC power / polygeneration systems, Energy Convers. Manag. 238 (2021) 114119. https://doi.org/10.1016/j.enconman.2021.114119.
[175] E.J.C. Cavalcanti, E.B.A. Santos, M. Carvalho, Energetic and exergetic performances of a multi-effect desalination unit driven by a gas turbine, Environ. Prog. Sustain. Energy. (2023) 1–15. https://doi.org/10.1002/ep.14324.
[176] A.M. Bahmanpour, A. Hoadley, A. Tanksale, Critical review and exergy analysis of formaldehyde production processes, 30 (2014) 583–604. https://doi.org/10.1515/revce-2014-0022.
[177] P. Kumar, R. Saravanan, Exergy Analysis of Combined Power and Cooling System using a Exergy Analysis of Combined Power and Cooling System using a Low Grade Heat Source, in: Proc. Natl. Conf. Innov. Refrig. Air Cond., India, 2017.
[178] J.A. León, G. Montero, M.A. Coronado, J.R. Ayala, D.G. Montes, L.J. Pérez, L. Quintana, J.M. Armenta, Thermodynamic Analysis of Waste Vegetable Oil Conversion to Biodiesel with Solar Energy, Energies. 15 (2022) 1834. https://doi.org/https://doi.org/10.3390/en15051834.
[179] M. Mehrpooya, B. Ghorbani, F.K. Bahnamiri, M. Marefati, Solar fuel production by developing an integrated biodiesel production process and solar thermal energy system, Appl. Therm. Eng. 167 (2020) 114701. https://doi.org/10.1016/j.applthermaleng.2019.114701.
[180] W. Jaimes, P. Acevedo, V. Kafarov, Exergy analysis of palm oil biodiesel production, Chem. Eng. Trans. 21 (2010) 1345–1350. https://doi.org/10.3303/CET1021225.
[181] Aspen, No Title, Aspen Process Econ. Anal. from Aspen Plus V.10 Simulator. (2017). https://www.aspentech.com/en/products/pages/aspen-process-economic-analyzer.
[182] K. Al-malah, Aspen Process Economic Analyzer (APEA), in: Aspen Plus® Chem. Eng. Appl., John Wiley & Sons, Inc., Hoboken, 2017: pp. 523–564.
[183] Y. You, J. Shie, C. Chang, C. Pai, Y. Yu, C.H. Chang, Y. You, J. Shie, C. Chang, S. Huang, Economic Cost Analysis of Biodiesel Production : Case in Soybean Oil, Energy & Fuels. 22 (2008) 182–189. https://doi.org/10.1021/ef700295c.
[184] D.D. Mclean, M. Kates, Biodiesel production from waste cooking oil : 2 . Economic assessment and sensitivity analysis, 90 (2003) 229–240. https://doi.org/10.1016/S0960-8524(03)00150-0.
[185] J. Mattsson, A. Hedström, M. Viklander, G.-T. Blecken, Fat, Oil, and Grease Accumulation in Sewer Systems: Comprehensive Survey of Experiences of Scandinavian Municipalities, J. Environ. Eng. 140 (2014). https://doi.org/10.1061/(asce)ee.1943-7870.0000813.
[186] Made-in-China, Good Price CAS 67-56-1 Industrial Grade 99.9% Methyl Alcohol/Methanol with High Purity, (2025).
[187] Made-in-China, Wholesale Sulfuric Acid: Sulfuric Acid Production CAS 7664-93-9 with Factory Price, (2025).
[188] Made-in-China, Factory Supplier 1310-58-3 Liquid Solid Flake Price KOH Potassium Hydroxide, (2025).
[189] Made-in-China, 85% Purity and Phosphoric Acid Food Grade, (2025).
[190] Ion Exchange Resin For Mtbe Equal To Amberlyst 15 Wet - Buy Catalyst Resin For Mtbe And Tame Production amberlyst 15 Wet Equivalent Ion Exchange Resin Polymer Type For Mtbe Wet Product P, (n.d.).
[191] Made-in-China, Iron Oxide Black Fe3o4 with Lowest Bulk Price, (n.d.).
[192] L. Pingxiang Chuangli New Material Co., 6-hole Cylinders Ni-Al2O3 Catalyst, Alibaba.Com. (2025).
[193] NingXia Yongruida Carbon Co. Ltd., Coconut Pellet Activated Carbon and Activated Carbon for Pressure Swing Adsorption, Made-in-China. (2025).
[194] C.N.M. Ltd., 5A Zeolite Molecular Sieves for Psa CO2 and Water Removal, Made-in-China. (2025).
[195] G. Kosenkov, Increase in West-EU Biodiesel Prices Following New Legislations, Vesper. (2024).
[196] ECHEMI, Glycerol Price List in Global Market, ECHEMI.Com. (2025).
[197] Alibaba, Dipotassium Hydrogen Phosphate/DKP/98% K2HPO4, Hebei Suoyi New Mater. Technol. Co., Ltd. (2025).
[198] E.M. Staff, Hydrogen Energy in 2025: Breaking Down Technical Barriers and Market Opportunities, Energies Media. (2025).
[199] R. Turton, R.C. Bailie, W.B. Whiting, Analysis, synthesis, and design of chemical processes, 1998. https://doi.org/10.5860/choice.36-0974.
[200] R.G. Nelson, S.A. Howell, J.A. Weber, Potential feedstock supply and costs for biodiesel production, in: Western Regional Biomass Energy Program, Reno, NV (United States), United States, 1994.
[201] M. Bender, Economic feasibility review for community-scale farmer cooperatives for biodiesel, 70 (1999) 81–87.
[202] J. Lee, B. Lee, Y. Sik, H. Lim, Bioresource Technology Preliminary techno-economic analysis of biodiesel production over solid- biochar, 306 (2020).
[203] M. Usman, S. Cheng, S. Boonyubol, M. Aziz, J.S. Cross, Socio- and techno-economic analyses of biodiesel production from sewage sludge in Tokyo , Japan, J. Clean. Prod. 425 (2023) 138551. https://doi.org/10.1016/j.jclepro.2023.138551.
[204] M.. Noordam, R. V. Withers, Producing Biodiesel from Canola in the Inland Northwest: An Economic Feasibility Study, University of Idaho, 1996.
[205] A.A. Apostolakou, I.K. Kookos, C. Marazioti, K.C. Angelopoulos, Techno-economic analysis of a biodiesel production process from vegetable oils, Fuel Process. Technol. 90 (2009) 1023–1031. https://doi.org/10.1016/j.fuproc.2009.04.017.
[206] CPC, Taiwan diesel prices, 08-Sep-2025, Glob. Pet. Prices. (2025).
[207] Statista, Annual average retail price for diesel fuel in the United States from 1994 to 2024, (2024).