| 研究生: |
曾嘉群 Tzeng, Jia-Chiun |
|---|---|
| 論文名稱: |
運用犧牲式模板轉印技術製作奈米噴嘴薄膜之研究 Investigation of sacrificial template imprinting for fabrication of nanonozzle membrane |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 感應耦合電漿 、微針 、犧牲式模版轉印 、旋轉塗佈 、高分子薄膜 |
| 外文關鍵詞: | inductively coupled plasma, polymer membrane, spin coating, microneedle, sacrificial template imprinting |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃針對一製備奈/微米噴嘴薄膜的方法-犧牲式模版轉印技術
(Sacrificial template imprinting,STI)進行改良並對製程做進一步的探討。在STI 製程中,首先以乾蝕刻方法製備微針陣列,再以PDMS 和PVA 進行二次性轉印得到PVA 的微針陣列,最後利用旋轉塗佈製作出奈/微米噴嘴薄膜。薄膜製備的參數包含了微針的製作、形狀、間距、表面粗糙,及高分子溶液濃度、旋轉塗佈的步驟等。由實驗結果得知,高分子溶液在中低濃度下(10%~20%)旋轉塗佈所得的膜厚會較旋轉塗佈平板為薄,而在高濃度下(30%)會較平板為厚。旋轉塗佈在平板時,膜厚與濃度的2.49 次方成正比,與轉速的-0.5 次方成反比;當旋轉塗佈在有微結構的平板上時,則只有在中低濃度下(10~20%)會具有上述之關係。在高分子濃度10~20%的情形下,旋轉塗佈在不同間距的微結構,可發現當柱體間距愈小所得的膜厚也愈小,而且愈容易出現高分子在柱體間接連的現象。旋轉塗佈在不同粗糙度的圓柱微構,
在中低濃度的情形下,粗糙度會使得膜厚變得較大;但在高濃度下,則對膜厚的影響不大。本實驗製得的薄膜孔徑在1~4μm 之間,膜厚為5μm 左右。
In this study, we have conducted a series of experiments to investigate the sacrificial template imprinting (STI) method which is used to fabricate nano/micronozzle membrane. For STI process, the microneedle array with tips at nanoscale is produced by dry etching process, followed by mold transferring twice and spin coating polymer solution to obtain the nano/micronozzle membrane. The process include shape, spacing, surface roughness of microneedles, concentrations of polymer solution, and the rotation speed of spin coating. The results showed that, between 10~20% concentration, the thickness of the polymer membrane obtained by spin coating on substrate with microstructures is smaller than that obtained on plain substrate; however, it becomes
larger when concentration is high(30%). In addition, the relationship between membrane thickness, and spin speed and polymer concentration follows hf~C02.49Ω-0.5 at polymer
concentrations between 10~20%. Moreover, thicker membranes can be obtained by creating rough surface on the microstructures and small spacing between micropillars. It
was observed that polymer tends to bridge between micropillars when spacing between them becomes smaller. Finally, the polymeric nano/micronozzle membranes were
fabricated with the diameter at the small end around 1~4μm and membrane thickness 5μm.
1. A. Manz, N. Graber & H. M. Widmer., Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing. Sensors and Actuators B B1, 244-248 (1990).
2. J. de Jong, R. G. Lammertink & M. Wessling., Membranes and Microfluidics: a Review. Lab on a Chip 6, 1125-1139 (2006).
3. P. Apel., Tracketching Technique in Membrane Technology. Radiation Measurements 34, 559-566 (2001).
4. Laurence Dauginet-De Pra, Etienne Ferain, Roger Legras & Sophie., Demoustier-Champagne Fabrication of a New Generation of Track-etched Templates and their Use for the Synthesis of Metallic and Organic Nanostructures. Nuclear Instruments and Methods in Physics Research B 196, 81-88 (2002).
5. Shengnian Wang et al., Polymeric Nanonozzle Array Fabricated Sacrificial Template Imprinting. Advanced Materials 17, 1182-1186 (2005).
6. Jan C. T. Eijkel, Johan G. Bomer & Albert van den Berg., Osmosis and Pervaporation in Polyimide Submicron Microfluidic Channel Structures. Journal of Applied Physics 87, 114103 (2005).
7. B. H. Timmer, K. M. van Delft, W. Olthuis, P. Bergveld & A. van den Berg., Micro-evaporation Electrolyte Concentrator. Sensors and Actuators B 91, 342–346 (2003).
8. Niels Lion, Jean-Olivier Gellon, Henrik Jensen & Hubert H. Girault., On-chip Protein Sample Desalting and Preparation for Direct Coupling with Electrospray Ionization Mass Spectrometry. Journal of Chromatography A 1003, 11-19 (2003).
9. Rijn, C.J.M.V., Nano and Micro Engineered Membrane Technology. (2006).
10. Sebastein Henry, Devin V. Mcallister, Mark G. Allen & Mark R. Prausnitz., Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery. Journal of Pharmaceutical Sciences 8, 922-925 (1998).
11. Devin V. McAllister et al., Microfabricated Needles for Transdermal Delivery of Macromolecules and Nanoparticles: Fabrication Methods and Transport Studies. PNAS 100, 13755-13760 (2003).
12. Jung-Hwan Park, Mark G. Allen & Mark R. Prausnitz., Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery. Journal of Controlled Release 104, 51-66 (2005).
13. Henri Jansen, Meint de Boer, Rob Legtenberg & Miko Elwenspoek., The Black Silicon Method: A Universal Method for Determining the Parameter Setting of a Fluorine-based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control. Journal of Micromechanics and Microengineering 5, 115-120 (1995).
14. Meint J. de Boer et al., Guidelines for Etching Silicon MEMS Structures Using Fluorine High-Density Plasmas at Cryogenic Temperatures. Journal of Microelectromechanical Systems 11, 385-401 (2002).
15. F. Laermer & D. Schilp., in U.S.Pat. , Vol. 5 501 893.
16. Tachi, K. Tsujimoto & S. Okudaira., Low Temperature Reactive Ion Etching and Microwave Plasma Etching of Silicon. Applied Physics Letters 52, 616-618 (1988).
17. C. J. Lawrence., The Mechanics of Spin Coating of Polymer Films. Physics of Fluids 31, 2786-2795 (1988).
18. Alfred G. Emsilie, Francis T. Bonner, Leslie G. Peck & Arthur D., Little Flow of a Viscous Liquid on a Rotating Disk. Journal of Applied Physics 29, 858-862 (1958).
19. A. Acrives, M. J. Shah & E. E. Petersen., On the Flow of a Non-Newtonian Liquid on a Rorating Disk. Journal of Applied Physics 31, 963-968 (1960).
20. B. D. Washo., Rheology and Modeling of the Spin Coating Process. IBM Journal of Research and Development 21, 190 (1977).
21. Dietrich Meyerhofer., Characterisrics of Resist Films Produced by Spinning. Journal of Applied Physics 49, 3993-3997 (1978).
22. W. J. Daughton & F. L. Givens., An Investigation of the Thickness Variation of Spun-on Thin Films Commonly Associated with the Semiconductor Industry. journal of Electrochemical society 129, 173-179 (1982).
23. B. T. Chen., Investigation of the Solvent-Evaporation Effect on Spin Coating of Thin Films. Polymer Engineering and Science 23, 399-403 (1983).
24. P. C. Sukanek., Spin Coating. Journal of Imaging Technology 11, 184-190 (1985).
25. David B. Hall, Patrick Underhil & John M. Torkelso., Spin Coating of Thin and Ultrathin Polymer Films. Polymer Engineering and Science 38, 2039-2045 (1998).
26. Sunil A. Gupta & Rakesh K. Gupta A Parametric., Study of Spin Coating over Topography. Industrial and Engineering Chemistry Research 37, 2223-2227 (1998).