簡易檢索 / 詳目顯示

研究生: 李瑩聰
Li, Ying-Tsung
論文名稱: 基板曲率、薄膜厚度以及氮氧氣體對於三層透明導電薄膜之光、電性質以及顯微結構之影響
Effects of substrate's radius of curvature, film thickness, and nitrogen/oxygen addition on electrical and optical properties and microstructure of triple layer thin films
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 117
中文關鍵詞: 曲面石英玻璃三層薄膜薄膜厚度光電性質鋁氮共摻雜氧化鋅
外文關鍵詞: Curved glass substrate, triple layer thin film, thin film thickness, optical and electrical properties, (Al,N) codoped ZnO
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第一個實驗中,根據田口式L9(33) 直交表製作九個試件用以探討三層氧化銦鎵鋅/銀/氧化銦鎵鋅鍍製於曲面基板之光學、電學性質以及顯微結構。在此實驗中氧化銦鎵鋅之厚度、銀層厚度、石英玻璃之曲率為實驗之三項變因。由實驗結果得知曲率之變化對於表面顆粒大小以及粗糙度有最大之貢獻率,並且曲率之增加會造成表面顆粒大小以及粗糙度之增加進而引起表面散射而造成載子遷移率之下降和電阻率之上升。然而,曲率之增加亦造成穿透率在 550 nm 波段之增加進而提升了Haack’s figure of merit (FOM)。銀層厚度之增加能夠顯著地提升載子濃度以及載子遷移率,並且提升藍光、綠光、紅光波段之反射率。由於Burstein-Moss effect之影響,載子濃度以及載子遷移率皆隨著氧化銦鎵鋅之厚度提升而增加。適當地選擇氧化銦鎵鋅之厚度、銀層厚度、石英玻璃之曲率能夠顯著提升 FOM。
    在第二個實驗中,單層摻鋁氧化鋅以及三層摻鋁氧化鋅/銀/摻鋁氧化鋅之薄膜透過改變氮氣以及氧氣添加含量來探討對於光學、電學性質以及顯微結構之影響。當氮氣含量大於2.5 sccm 時,摻鋁氧化鋅薄膜之粒徑大小以及表面粗糙度會下降,然而殘留應力會增加。氧氣之添加對於鋁氧化鋅薄膜之粒徑大小、表面粗糙度、殘留應力有相同之影響,但是添加氧氣之薄膜會有相對於添加氮氣之薄膜較小之粒徑以及表面粗糙度。實驗結果顯示摻鋁氧化鋅之厚度會和單層以及三層薄膜之粒徑大小以及粗糙度成正相關,但是和殘留應力呈負相關之關係。試件D之三層薄膜有著60 nm厚之摻鋁氧化鋅,並且顯示出在所有試件中最強的抗反射效果。氮氣的添加可以型成p型之摻鋁氧化鋅薄膜,然而氧氣的添加會造成氧空缺之減少進而造成載子濃度以及載子遷移率之下降。在n型三層薄膜試件中,可以觀察到Burstein-Moss effect。

    For the first experiment, nine specimens are prepared on the basis of the L9(33) orthogonal array design to evaluate the optical and electrical properties, morphology, and the microstructure of a-IGZO/Ag/a-IGZO (IAI) triple-layer composite films deposited on curved glass substrates with different radius of curvature efficiently. The experiments are arranged for the changes in three controlling factors, namely the IGZO and Ag thicknesses, and substrate’s radius of curvature. Radius of curvature has the highest contribution for the RMS surface roughness (SRq) and the mean particle size (PS). The carrier mobility (CM) and carrier concentration (CC) are proportional to each, irrespective of the controlling factor change in this study. An increase in the radius of curvature can result in the increases of SRq and PS, and therefore brings in a surface scattering effect which can cause the reduction of CM as well as the rise of resistivity (R). In addition, a sufficiently large radius of curvature can elevate the transmittance at 550 nm and Haack’s figure of merit (FOM) effectively, but it can lower the reflectance of blue, green and red. Via the carrier injections, increasing the Ag thickness can elevate the carrier mobility and concentration significantly. The reflectance for blue, green, and red are also risen by increasing the Ag thickness. As a result of Burstein-Moss effect, carrier concentration and optical bandgap are elevated by increasing the IGZO thickness. Additionally, the reflectance of blue, green, and red are also risen. Appropriate choices in the IGZO and Ag thicknesses and the radius of curvature can obtain the transmittance >80 %, and elevate the FOM significantly. For the second set of experiments, AZO and AZO/Ag/AZO (AAA) specimens are prepared by varying O2 and N2 flow rates to investigate the gas effects on the microstructure, and the optical and electrical properties. The AZO specimens are found to have the decreases in grain size and SRq, and an increase in the compressive residual stress when N2 flow rate increases higher than 2.5 sccm. The addition of O2 can contribute to a similar tendency for grain size, SRq and residual stress; the grain size and SRq are always smaller, while residual stress is larger than that prepared with N2. The thickness of AZO is proportional to the grain size and SRq, whereas it is inversely proportional to the residual stress of AZO, they are valid for both AZO and AAA thin films. Specimen D with 60-nm AZO thickness possesses the strongest anti-reflection effect of the AAA structure, and therefore suppresses the reflection from the Ag interlayer significantly. P-type conductivity is achieved by introducing the N2 into AZO layers. The carrier mobility and carrier concentration are lowered by increasing the amount of O2 because the oxygen vacancies are reduced. The Burstein-Moss effect is observed for the n-type AAA thin films where a decrease in optical bandgap along with an increase in carrier concentration is found for the p-type AAA films. Specimen D possesses the highest FOM value and relative high T at 550 nm because the 60-nm AZO can contribute to the strongest anti-reflection effect.

    Table of Contents Abstract………………………………………………………………………………Ⅱ Acknowledgement………………………………………………………………….. Ⅵ Table of Contents…………………………………………………………………... Ⅶ List of Tables………………………………………………………………………...Ⅸ List of Figures………….……………………………………………………..…..….Ⅹ Chapter 1 - Introduction 1 1.1. Literature review 1 1.2. Motivations 4 1.3. Thesis writing methodology 6 Chapter 2 - Basic Theories 7 2.1. Introduction of TCOs 7 2.2. Deposition Method 8 2.2.1. Physical Vapor Deposition (PVD) 8 2.3. Theory of Residual Stress 8 2.3.1. Introduction of residual stress 8 2.3.2. The calculation of residual stress 9 2.4. Theory of grain size 10 2.5. Theory of electrical properties 10 2.5.1. Relationship between carrier mobility, carrier concentration, and resistivity 10 2.5.2. Theory of conducting mechanism for TCO/metal/TCO thin film 11 2.5.3. Theory of scattering 12 2.6. Theory of optical properties 12 2.7. Figure of merit 13 2.8. Theory of Taguchi method 13 2.9. Theory of Instrument 14 2.9.1. Theory of Scanning Electron Microscope 14 2.9.2. Theory of Transmission Electron Microscopy 14 2.9.3. Theory of Hall effect measurement 15 Chapter 3 - Experimental Details 22 3.1. Main objective 22 3.2. Specimens preparation 22 3.3. Experimental instruments 24 3.3.1. Co-sputtering system. 24 3.3.2. UV/Visible/NIR spectrophotometer. 24 3.3.3. Hall effect analyzer 24 3.3.4. Transmission Electron Microscopy (TEM) 25 3.3.5. X-ray Diffractometer (XRD) 25 3.3.6. Atomic Force Microscope (AFM) 26 3.3.7. Scanning Electron Microscope (SEM) 26 3.3.8. X-ray photoelectron spectroscopy (XPS) 26 Chapter 4 - Results and Discussions 37 4.1. The result of a-IGZO/Ag/a-IGZO triple layer thin film 37 4.1.1. Morphological analysis 37 4.1.2. Structural analysis 38 4.1.3. Electrical analysis 40 4.1.4. Optical analysis 41 4.1.5. Effect of substrate’s radius of curvature 41 4.1.6. Effect of Ag thickness 44 4.1.7. Effect of IGZO thickness 45 4.1.8. Figure of merit 46 4.2. The result of single layer AZO thin film 47 4.2.1. Structural analysis 47 4.2.2. Influence of nitrogen flow rate on microstructural properties 48 4.2.3. Influence of oxygen flow rate on microstructural properties 49 4.2.4. Influence of nitrogen and oxygen mixed flow rate on microstructural properties 50 4.2.5. Dependence of surface roughness, residual stress and grain size on the thin film thickness 51 4.2.6. TEM analysis 52 4.3. Results of AZO/Ag/AZO thin film with the AZO layers deposited with N2 and O2 53 4.3.1. Structural analysis of AZO/Ag/AZO thin films 53 4.3.2. Optical analysis of AZO/Ag/AZO thin films 54 4.3.3. Electrical analysis of AZO/Ag/AZO thin films 56 4.3.4. Figure of merit of AZO/Ag/AZO thin films 60 Chapter 5 - Conclusion 109 Reference 111 List of Tables Table 2.1 Applications of TCOs materials…………………………………………...17 Table 3.1. The mixed gas flow rates for the deposition of single AZO layer………...27 Table 3.2. The mixed gas flow rates for the deposition of AZO layer for AZO/Ag/AZO triple layer thin film.………………………………………………………………….27 Table 3.3. Design of the controlling factor…………………………………………...28 Table 3.4. L9 (33) orthogonal table……………………………………………………28 Table 4.1. The morphological parameters for IGZO/Ag/IGZO specimens. …………61 Table 4.2. The surface roughness parameters for IGZO/Ag/IGZO specimens………62 Table 4.3. Electrical properties of the IGZO/Ag/IGZO thin films. ………………….63 Table 4.4. Optical properties of the IGZO/Ag/IGZO thin films……………………. 64 Table 4.5. The structural parameters for the single layer AZO specimens. …………65 Table 4.6. The structural parameters of the AZO layers for AZO/Ag/AZO triple layer specimens…………………………………………………………………….………66 Table 4.7. Optical properties for AZO/Ag/AZO specimens…………………………66 Table 4.8. Comparisons of the electrical properties of triple layer thin films……….67 Table 4.9. Electrical properties and FOM of specimens A-G………………………..67 List of Figures Fig.2.1. Crystal structure of IGZO [43] ……………………………………………..18 Fig.2.2. (a) ZnO unit cell with Wurtzite structure (b) different types of crystal plans of ZnO Wurtzite structure [44] …………………………………………………..….….18 Fig.2.3. Thin film under tensile stress or compressive stress [45] …………….…….19 Fig.2.4. The carrier mobility of IGZO as a function of In2O3, Ga2O3, and ZnO [8]…...………………………………………………………………………………..19 Fig.2.5. Schematic representation of the electrical behavior of TCO/metal/TCO triple layer thin film [46]….. ………………………………………………………………20 Fig.2.6. The incident electron beam bombard on the specimen[42]…. ……………..20 Fig.2.7. Set up of Hall effect measurement…………………………………………..21 Fig.3.1. (a) Triple-layer thin films deposited on a curved glass substrate with the radius of curvature of (b) 35 mm, (c) 45 mm, (d) 55 mm. …………. ………………29 Fig.3.2. Steps of substrate cleaning.. ………………………………………………...30 Fig.3.3. Co-sputtering system………………………………………………………..31 Fig.3.4. Characterizations of thin film……………………………………………….32 Fig.3.5. The UV/Visible/NIR spectrophotometer…………………………………....33 Fig.3.6. Hall effect analyzer…. ……………………………………………………...33 Fig.3.7. Transmission Electron Microscopy (TEM)………………………………....34 Fig.3.8. Multipurpose X-ray Diffractometer (XRD)…. ……………………………..34 Fig.3.9. Atomic Force Microscope (AFM)…………………………………………..35 Fig.3.10. Scanning Electron Microscope (SEM)…………………………………….35 Fig.3.11. The X-ray photoelectron spectroscopy (XPS) system……………………..36 Figs.4.1.(a-i).The 3D surface morphology, RMS surface roughness, kurtosis, and skewness for specimen 1-9…………………………………………………………...72 Figs.4.2.(a-i) SEM images and histograms of specimen 1-9…………………………81 Figs.4.3 (a) Results of the kurtosis and skewness of particle size distribution as a function of mean particle size; (b) plot of skewness vs kurtosis for particle size distribution (c) variations of kurtosis and skewness with SRq…………….…………83 Fig.4.4. GID-XRD analyses of the IAI structures………………………………….....83 Fig.4.5. Cross-sectional TEM images for (a) specimens4, (b) 5, and (c) 6 and their SAED analyses for Ag and IGZO layer, respectively….………………………..……85 Fig.4.6. The correlation among Hall carrier mobility, resistivity, and carrier concentration of the IAI thin films…………………………………………………....86 Fig.4.7. The (a) Transmittance and (b) reflectance for 9 specimens in the visible light region….. …………………………………………………………………………….87 Fig.4.8. The absorption coefficient of IAI thin films on curved quartz slides as a function of bandgap energy….……………………………………………………….87 Fig.4.9. (a) Mean optical bandgap and mean particle size as a function of substrate’s radius of curvature; (b) mean resistivity as a function of mean SRq and mean optical bandgap with the variation of substrate’s radius of curvature………………………...88 Fig.4.10. The mean reflectance and transmittance as a function of substrate’s radius of curvature….…………………………………………………..………………………89 Fig.4.11. (a) Mean optical bandgap and mean carrier concentration as a function of IGZO thickness; (b) mean resistivity, carrier mobility, and carrier concentration as a function of IGZO thickness….……………………………………………………….90 Fig.4.12. The mean reflectance and transmittance as a function of Ag thickness……..91 Fig.4.13. (a) Mean optical bandgap and mean carrier concentration as a function of IGZO thickness; (b) mean resistivity, carrier mobility, and carrier concentration as a function of IGZO thickness…………………………………………………………...92 Fig.4.14. The mean reflectance and transmittance as a function of IGZO thickness……………………………………………………………………………...93 Fig.4.15. XRD patterns for the AZO single layer specimens 1-12…………………….94 Fig.4.16. (a). FWHM and grain size; (b) SRq and grain size; (c) lattice constant and residual stress as a function of nitrogen flow rate…………….………………………96 Fig.4.17. (a) FWHM and grain size; (b) SRq and grain size; (c) lattice constant and residual stress as a function of oxygen flow rate………………………………………97 Fig.4.18. (a) FWHM and grain size; (b)SRq and grain size; (c) lattice constant and residual stress as a function of nitrogen and oxygen mixed flow rate……………….99 Fig.4.19. Grain size, SRq, and residual stress for monolayer AZO thin film as a function of AZO thickness…. ………………………………………………………………....99 Fig.4.20. TEM images and SAED patterns for single layer AZO specimens (a) 1, (b) 5, and (c) 9…………………………………………………………………………..101 Fig.4.21. XRD patterns for the AZO/Ag/AZO triple layer specimens A-G. ………...101 Fig.4.22. The grain size, RMS surface roughness, and compressive residual stress for the AZO/Ag/AZO thin films as a function of the AZO thickness……………………102 Fig.4.23. (a)Transmittance, (b) reflectance, and (c) absorptance spectrum for triple layer AZO/Ag/AZO specimens A-G…. …………………..………………………………103 Fig.4.24. Transmittance, reflectance, and absorptance of red, green, and average light regions for AZO/Ag/AZO triple layer specimens A-G…. …………………………105 Fig.4.25. The reflectance of AZO/Ag/AZO thin films as a function of AZO thickness…………………………………………………………………………….106 Fig.4.26. The absorptance coefficient of triple layer specimens A-G as a function of bandgap energy……………………………………………………………………...106 Fig.4.27. Carrier mobility, carrier concentration, and resistivity for triple layer specimens as a function of (a) N2 flow rate; (b) O2 flow rate; and (C) N2 and O2 mixed gas flow rate………………………………………………………………………....108 Fig.4.28. Optical bandgap as a function of carrier concentration……………………108

    [1] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices Microstruct., 48 (2010) 458-484.
    [2] A. Yamamoto, S. Nagasawa, H. Yamamoto, T. Higuchi, Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems, IEEE Trans. Vis. Comput. Graphics, 12 (2006) 168-177.
    [3] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes, Nano Lett., 6 (2006) 1880-1886.
    [4] C.G. Granqvist, A. Hultåker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411 (2002) 1-5.
    [5] F. Mei, T. Yuan, R. Li, Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films, Ceram. Int., 43 (2017) 8866-8872.
    [6] S. Calnan, A. Tiwari, High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films, 518 (2010) 1839-1849.
    [7] T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors, NPG Asia Mater., 2 (2010) 15.
    [8] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Jpn. J. Appl. Phys., 45 (2006) 4303.
    [9] T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In–Ga–Zn–O thin-film transistors, Sci. Technol. Adv. Mater., 11 (2010) 044305.
    [10] T.-C. Li, C.-F. Han, K.-C. Hsieh, J.-F. Lin, Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen, Ceram. Int., 44 (2018) 6573-6583.
    [11] X. Zhou, J. Xu, L. Yang, X. Tang, Q. Wei, Z. Yu, Amorphous In 2 Ga 2 ZnO 7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering, Opt. Mater. Express, 5 (2015) 1628-1634.
    [12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432 (2004) 488.
    [13] C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, C.-M. Leu, High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates, IEEE Trans. Electron Devices, 58 (2011) 1440-1446.
    [14] S. Boscarino, I. Crupi, S. Mirabella, F. Simone, A. Terrasi, TCO/Ag/TCO transparent electrodes for solar cells application, Appl. Phys. A, 116 (2014) 1287-1291.
    [15] K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, C. Ravidhas, Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications, RSC Adv., 6 (2016) 63314-63324.
    [16] S.Y. Lee, Y.S. Park, T.-Y. Seong, Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes, J. Alloys Compd., 776 (2019) 960-964.
    [17] H. Han, N. Theodore, T. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer, J. Appl. Phys., 103 (2008) 013708.
    [18] I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Optimization of ZnO: Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, 520 (2012) 4432-4435.
    [19] J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, D. Zhang, Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition, Journal of Applied Physics, 108 (2010) 073109.
    [20] D.H. Kim, S.Y. Lee, Variation of optical and electrical properties of amorphous In–Ga–Zn–O/Ag/amorphous In–Ga–Zn–O depending on Ag thickness, Thin Solid Films, 536 (2013) 327-329.
    [21] A. Indluru, T. Alford, Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers, J. Appl. Phys., 105 (2009) 123528.
    [22] K.-N. Chen, C.-F. Yang, C.-C. Wu, Y.-H. Chen, Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode, Materials, 10 (2017) 226.
    [23] X. Li, S. Chen, T. Chen, Y. Liu, Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement, ECS Solid State Lett., 4 (2015) P29-P32.
    [24] B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries, Journal of Applied Physics, 108 (2010) 103721.
    [25] F. Selim, M. Weber, D. Solodovnikov, K. Lynn, Nature of native defects in ZnO, Physical review letters, 99 (2007) 085502.
    [26] M.D. McCluskey, S. Jokela, Defects in zno, Journal of Applied Physics, 106 (2009) 10.
    [27] F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, J. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Applied Physics Letters, 87 (2005) 252102.
    [28] B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarstrom, P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions, Journal of the American Chemical Society, 134 (2011) 464-470.
    [29] H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, Z. Wang, Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering, Materials Letters, 165 (2016) 123-126.
    [30] R.J. Drese, M. Wuttig, Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows, Journal of applied physics, 98 (2005) 073514.
    [31] D. Horwat, A. Billard, Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering, Thin Solid Films, 515 (2007) 5444-5448.
    [32] K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian, Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study, Applied Surface Science, 255 (2008) 2026-2029.
    [33] G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys., 47 (1976) 4086-4089.
    [34] D.C. Hays, B. Gila, S. Pearton, F. Ren, Energy band offsets of dielectrics on InGaZnO4, Appl. Phys. Rev., 4 (2017) 021301.
    [35] B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, C.G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Physical Review B, 37 (1988) 10244.
    [36] D. Ozevin, Micro-electro-mechanical-systems (MEMS) for assessing and monitoring civil infrastructures, in: Sensor Technologies for Civil Infrastructures, Elsevier, 2014, pp. 265-302e.
    [37] Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, F. Hu, Room temperature preparation of high performance AZO films by MF sputtering, Ceramics International, 39 (2013) 1135-1141.
    [38] S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, T. Yao, Lattice deformation of ZnO films with high nitrogen concentration, Appl. Surf. Sci., 254 (2008) 7972-7975.
    [39] U. Holzwarth, N. Gibson, The Scherrer equation versus the'Debye-Scherrer equation', Nature nanotechnology, 6 (2011) 534.
    [40] P.J. Ross, P.J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, McGraw-Hill New York, 1988.
    [41] J.R. Philip, Taguchi techniques for quality engineering, McGraw-Hill, New York, (1996).
    [42] B. Voutou, E.-C. Stefanaki, K. Giannakopoulos, Electron microscopy: The basics, Physics of advanced materials winter school, 1 (2008).
    [43] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, H. Hosono, Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations, Physical review B, 75 (2007) 035212.
    [44] F.Y. Niyat, I. Sabzevar, M.H.S. Abadi, The review of semiconductor gas sensor for NOx detecting, Turkish Online J. Des. Art Commun, 6 (2016) 898-937.
    [45] M. Berdova, Micromechanical characterization of ALD thin films, (2015).
    [46] C. Guillén, J. Herrero, TCO/metal/TCO structures for energy and flexible electronics, Thin Solid Films, 520 (2011) 1-17.
    [47] N. Ren, J. Zhu, S. Ban, Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature, AIP Adv., 7 (2017) 055009.
    [48] R. Zhang, S. Qi, J. Jia, B. Torre, H. Zeng, H. Wu, X. Xu, Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption, J. Alloys Compd., 623 (2015) 186-191.
    [49] A. Yildiz, H. Cansizoglu, R. Abdulrahman, T. Karabacak, Effect of grain size and strain on the bandgap of glancing angle deposited AZO nanostructures, J. Mater. Sci.: Mater. Electron., 26 (2015) 5952-5957.
    [50] J. Morrison, Modern physics: for scientists and engineers, Academic Press, 2015.
    [51] M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104 (2004) 293-346.
    [52] H. Aziz, Z.D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices, Science, 283 (1999) 1900-1902.
    [53] J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, L. Zhu, Carrier concentration dependence of band gap shift in n-type ZnO: Al films, J. Appl. Phys., 101 (2007) 083705.
    [54] D.B. Potter, M.J. Powell, I.P. Parkin, C.J. Carmalt, Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD, Journal of Materials Chemistry C, 6 (2018) 588-597.
    [55] K.W. Chee, F. Meng, D.C. Lai, F. Huang, Measurement-based optimization and analysis of α-IGZO/Ag/α-IGZO transparent conducting electrodes fabricated using DC magnetron sputter deposition, Ceram. Int., 44 (2018) 20939-20946.
    [56] R. Amiruddin, S. Devasia, D. Mohammedali, M.S. Kumar, Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires, Semicond. Sci. Technol., 30 (2015) 035009.
    [57] J.-H. Lee, B.-O. Park, Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method, Thin Solid Films, 426 (2003) 94-99.
    [58] Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, X. Shang, Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films, Vacuum, 85 (2011) 744-748.
    [59] C.R. Gobbiner, M.A.A. Veedu, D. Kekuda, Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering, Appl. Phys. A, 122 (2016) 272.
    [60] S. Inguva, R.K. Vijayaraghavan, E. McGlynn, J.-P. Mosnier, Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates, Materials Research Express, 2 (2015) 096401.
    [61] A. Moridi, H. Ruan, L. Zhang, M. Liu, Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations, International Journal of Solids and Structures, 50 (2013) 3562-3569.
    [62] H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Local lattice distortion in high-entropy alloys, Physical Review Materials, 1 (2017) 023404.
    [63] G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, C. Chen, Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells, Ceramics International, 42 (2016) 2813-2820.
    [64] T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, S. Han, Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering, Vacuum, 83 (2008) 257-260.
    [65] W.-S. Liu, Y.-H. Liu, W.-K. Chen, K.-P. Hsueh, Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance, Journal of Alloys and Compounds, 564 (2013) 105-113.
    [66] S. Mohamed, Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system, Journal of Physics and Chemistry of Solids, 69 (2008) 2378-2384.
    [67] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE, J. Cryst. Growth, 209 (2000) 526-531.
    [68] M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, P. Tailhades, Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering, J. Mater. Res., 25 (2010) 2407-2414.
    [69] H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, Y. Im, Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment, Mater. Lett., 63 (2009) 2516-2519.
    [70] H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, B. Tay, Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique, J. Cryst. Growth, 268 (2004) 596-601.
    [71] A. Yamamoto, T. Kido, T. Goto, Y. Chen, T. Yao, Bandgap renormalization of ZnO epitaxial thin films, Solid State Commun., 122 (2002) 29-32.
    [72] B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, D. Shen, Investigation on the formation mechanism of p-type Li–N dual-doped ZnO, Appl. Phys. Lett., 97 (2010) 222101.
    [73] J. Lu, Z. Ye, L. Wang, J. Huang, B. Zhao, Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD, Mater. Sci. Semicond. Process., 5 (2002) 491-496.
    [74] L. Pauling, The Nature of the Chemical Bond, Cornell university press Ithaca, NY, 1960.
    [75] M.D. Kumar, Y.C. Park, J. Kim, Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers, Superlattices and Microstructures, 82 (2015) 499-506.
    [76] H.-W. Wu, C.-H. Chu, Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering, Materials Letters, 105 (2013) 65-67.
    [77] M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications, Vacuum, 86 (2012) 1318-1322.
    [78] J.H. Kim, J.H. Lee, S.-W. Kim, Y.-Z. Yoo, T.-Y. Seong, Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices, Ceramics International, 41 (2015) 7146-7150.
    [79] J.H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, T.-Y. Seong, ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode, Current Applied Physics, 15 (2015) 829-832.

    下載圖示 校內:2024-07-11公開
    校外:2024-07-11公開
    QR CODE