簡易檢索 / 詳目顯示

研究生: 林奕佐
Lin, I-Tso
論文名稱: 半導體量子點雷射之臨界電流密度探討
Study on Threshold Current Density of Semiconductor Quantum Dot Laser
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 臨界電流密度量子點雷射
外文關鍵詞: Quantum dot laser, Threshold current density
相關次數: 點閱:60下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   量子點雷射在近幾年來開始蓬勃發展,主要是因為它有高溫穩定的特性,以及低的起始電流密度,可應用於光碟機讀寫頭、紅外線偵測器,以及現今最熱門的光纖通訊等方面,且因為量子點製作技術逐漸改良,使得各量子點的尺寸、均勻度有明顯的改善,得以發展性能較佳的量子點雷射。
      目前二維侷限的量子線雷射逐漸成熟,因此,各國皆逐漸往三維侷限的量子點雷射發展。理論上,量子點雷射的臨界電流密度,受溫度與特徵溫度的影響不大,僅只有微小的變化。但是,在高溫的狀態下,載子會因為熱激發而逃脫到光侷限層窄小區域中,使得載子無法有效地被量子點所抓住,而造成臨界電流密度大幅的提高。本論文,係以理論模式探討量子點層與光侷限層分別為GaInAs與GaInAsP時,量子點在平衡態、非平衡態注入條件下,電子與電洞佔據機率達到雷射作用時之最小表面密度以及量子點尺寸變異等因素對臨界電流密度的影響,在模擬結果中,在非平衡態注入量子點,可以得到在80K時,臨界電流密度只有4~5安培/平方公分,以及和實驗做出來的量子點雷射做相關的比較。

      The technology of quantum dot laser has attracted great attention recently due to its excellent properties of high temperature and the low threshold current density. Its applications include the header of read-write of the CD-ROM drive, infrared remote sensing the optical fiber and communication and so on. Due to significant progress in manufacturing technology of quantum dot layer structure, the size and uniformity of quantum dots have achieved great improvement. Consequently, development of high performance quantum-dot laser becomes possible.
      Recently, the techniques of quantum-well laser with two-dimensional confinement have already well developed. In the near future, the quantum-dot laser with three-dimensional confinement certainly becomes the next focus of high technology in many countries. Theoretically, the effect of the temperature and characteristic temperature on the threshold current density of quantum-dot laser is very small. However, at higher temperature, the carriers will easily by thermally exciting to the narrow region of optical confinement layer (OCL). In other words, it becomes more difficult to catch the carriers by the quantum dots. Consequently, the threshold current density of quantum dot will rise substantially. In this thesis,GaInAs and GaInAsP are selected as material of quantum dot and optical confinement layers, respectively. We focus on the state of equilibrium, non-equilibrium injections. The effects of the probability of electron and hole, the minimum of surface density, and the derivation in size and uniformity of quantum dot on the threshold current density are evaluated and discussed. The result show that on the state of non-equilibrium injections, we get 4~5 A/cm2 of threshold current density at 80K, and the relationship compare with the quantum dot laser of experiment.

    目錄 中文摘要…………………………………………………… Ⅰ 英文摘要…………………………………………………… Ⅱ 誌謝………………………………………………………… Ⅳ 目錄………………………………………………………… Ⅵ 表目錄……………………………………………………… Ⅹ 圖目錄……………………………………………………… XI 符號說明…………………………………………………… ⅩⅣ 第一章 緒論 1.1 前言 1 1.2 研究背景與動機 2 1.3 文獻回顧 3 1.3.1 量子點製作 3 1.3.2雷射臨界電流相關文獻 5 1.4 章節瀏覽 11 第二章 相關科技與發展 2.1 量子點 13 2.1.1 量子效應 13 2.1.2 量子侷限效應 14 2.1.3 量子點的特性 14 2.2 量子點製備技術 15 2.2.1 液相磊晶法 16 2.2.2 液相磊晶法 16 2.2.3 有機金屬化學氣相法 17 2.2.4 分子束磊晶法 18 2.2.5 磊晶模式 21 2.3 元件結構 21 2.3.1 穿透式電子顯微鏡 22 2.4 雷射特性 23 2.4.1 吸收、自發放射和激發放射 23 2.4.2 光侷限因素 24 2.4.3 臨界電流密度 25 2.4.4 微分量子效率 26 2.4.5 溫度效應 27 2.5 費米能階(Fermi Level)與 費米-得瑞克分佈(Fermi-Dirac Distribution) 28 2.5.1 費米能階(Fermi Level) 28 2.5.2 電子濃度與費米-得瑞克分佈的關係 28 2.6 費米黃金法則 30 2.7 狀態密度 31 2.8 光學增益 33 第三章 基本理論分析 3.1 輻射再結合與非輻射再結合 35 3.2 臨界電流密度基本理論 37 3.3 平衡與非平衡注入量子點 43 3.3.1 量子點平衡注入,量子能量區域為窄線的情況 45 3.3.2 量子點平衡注入,量子能量區域為寬線的情況 47 3.3.3 量子點非平衡注入 49 3.4 最小表面密度 51 第四章 結果與討論 4.1模擬分析與模擬材料相關參數 54 4.1.1 模擬材料與相關參數 54 4.2 模擬結果與討論 56 4.2.1 Non-equilibrium filling of QDs,relative low temperatures and/or deep potential well 56 4.2.2 Equilibrium filling of QDs, narrow line of the quantized energy distribution 58 4.2.2.1 不含有量子點自發輻射再結合電流 61 4.2.2.2 含有量子點自發輻射再結合電流 63 4.2.3 不同總損失與量子點尺寸方均根值 73 4.2.4不同表面密度對臨界電流密度的關係 75 第五章 結論與未來展望 5.1 總結 77 5.2 未來展望 78 參考文獻 79 附錄A-Fermi-Dirac function推導 84 自述 87

    [1] L. V. Asryan and R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, pp. 841-850 (1998).
    [2] H.Hirayama, K. Matsunaga, M. Asada, and Y. Suematsu, “Lasing action of tensile-strained quantum box lasers,” Electron. Lett., vol. 30, pp. 142-143, 1994.
    [3] P. Lls, M. Michel, A. Forchel, I. Gyuro, M. Klenk, and E. Zielinski, “ Fabrication and optical properties of InGaAs/InP quantum wires and dots with strong lateral quantization effects,” J. Vac. Sci. Technol. B 11, pp. 2584-2587, 1993.
    [4] E. Kapon, K. Kash, E. M. Clausen, Jr., D. M. Hwang, and E. Colas,“ Luminescence characteristics of quantum wires grown byorganometallic chemical vapor deposition on non-planar substrates,”Appl. Phys. Lett., vol. 60, pp. 477-479, 1992.
    [5] Reed M.A.Bate R.T.,Bradshaw K.,Duncan W.M.,Frensley W.M.,LEE J.W., Smith H. D.,Spatial quantization in GaAs-AlGaAs multiple quantum dots,J.Vaccum Sci. Technol. B,4,358,(1986)
    [6] Cibert J., Petroff P. M., Dolan G. J., Pearton S. J., Gossard A. C., English J. H., Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes, Appl. Phys. Lett.49, pp.1275, (1986).
    [7] Temkin. H., Dolan G. J., Panish M. B., Chu S. N. G., Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes, Appl. Phys. Lett.50, pp.413, (1987).
    [8] Kash K., Scherer A., Worlock J. M., Craighead H. G.., Tamargo M. C., Optical spectroscopy of ultrasmall structures etched from quantum wells, Appl. Phys. Lett.49, pp.1043, (1986).
    [9] I.N. Stranski and L. Krastanow, Sitzungsberichte d. Akad. D. Wissenschaften in Wien, Abt.Iib, Band 146, pp.797, (1937)
    [10]P.Chen,Q. Xie, A. Madhukar, L. Chen, and Konkar, “ Mechanisms of strained island formation in molecular beam epitaxy of InAs on GaAs (100),” J. Vac. Sci. Technol. B, vol. 12, pp. 2568-2573, 1994.
    [11] T. Marschner, L. Tapfer, N. Y. Jin-Phillipp, F. Phillipp, S. Lutgen, M.Volk, W. Stolz, and E. O. Gogel, “Strain induced self organized grown of lateral periodic strained layer superlattices on off-oriented substrates by metalorganic vapour phase epitaxy,” Solid-State Electron, vol. 40, pp. 819-823, 1996.
    [12] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers”, Van Nostrand Reinhold, 1993
    [13] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.,vol. 40, no. 11, pp. 939–941, June 1982.
    [14]M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron.,vol. 22, no. 9, pp. 1915–1921, Sept. 1986.
    [15]Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron., vol. 25, pp. 2001–2006, Sept. 1989.
    [16]Kirstaedter.N.,N.N.Ledentsov,M.Grundmann,D.Bimberg, V.M.Ustinov,S.S.Ruvimov,M.V.Maximov,P.S.Kop’ev,Zh.I.Alferov,U.Richter,P.Werner,U.Gosele,and J.Heydenreich , “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., vol. 30, no. 17, pp. 1416–1417, Aug. 1994.
    [17]D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum dot heterostructure,” John Wiley & Sons, 1999.
    [18]L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, no. 4, pp. 554–567, Apr. 1996
    [19]M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys., vol. 36, pp. 4181–4187, 1997.
    [20]Vahala K and KERRY J “Quantum Box Fabrication Tolerance and Size Limits in Semiconductors and Their Effect on Optical Gain” IEEE J. Quantum Electron. 24 pp.523-530, 1988
    [21]Wang Zhan-Guo*, Chen Yong-Hai, Liu Feng-Qi, Xu Bo, Self-assembled quantum dots, wires and quantum-dot lasers, Journal of Crystal Growth,pp. 1132–1139,(2001)
    [22]http://www.fzu.cz/oddeleni/povrchy/mbe/mbe.php3
    [23]http://140.114.18.41/micro/chap2/fig/fig0217.jpg
    [24]張俊彥 譯,施敏,原著,半導體元件物理與製作技術,高立圖書有限公司
    [25]Grundmann M, Christen J, Ledentsov N N, Böhrer J and Bimberg D, Ultranarrow Luminescence Lines from Single Quantum Dots, Phys. Rev. Lett. 74(20), 4043(1995)
    [26]陳政廷,砷化銦/砷化鎵/砷化鋁鎵量子點雷射之研製,國立交通大學電子研究所,碩士論文,(2001)
    [27]G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, pp1271-1279(2000)
    [28]Feng-Qi Liu,Quan-Sheng Zhang,Yong-Zhao Zhang,Ding Ding Bo Xu, Zhan-guo Wang,Growth and characteristic of InGaAs/InAlAs quantum cascade lasers,Solid-State Electronics 45,pp1831-1835,(2001)
    [29]A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev,E.A. Semenova, Yu.M. Shernyakov, M.V. Maximov, D.A. Livshits,V.M. Ustinov, N.N. Ledentsov, D. Bimberg, Zh.I. Alferov, InAs/InGaAs/GaAs quantum dot lasers of 1.3 range with enhanced optical gain, Journal of Crystal Growth 251,pp729-736,(2003)
    [30]M. Maier and K. Kuhler,A. Hdpner,D. J. As, Compositional analysis of molecular beam epitaxy grown InyGa1-yAs/GaAs/AlxGa1-xAs quantum wells by determination of film thickness, Journal of Applied Physics,pp3820-3826,(1993)
    [31]Sze S M Physics of Semiconductor Devices 2nd Wiley

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE