| 研究生: |
符明勛 Fu, Ming-Hsun |
|---|---|
| 論文名稱: |
非迭代求解七參數相似轉換與粗差偵錯 Non-iterative Method of Seven-Parameter Similarity Transformation and Gross Error Detection |
| 指導教授: |
尤瑞哲
You, Rey-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 相似轉換 、非迭代參數估計 、粗差偵錯 |
| 外文關鍵詞: | Molodensky Transformation, Cayley Transformation, Gross Error Detection |
| 相關次數: | 點閱:151 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
座標轉換於測量各大領域中為不可或缺之技術。於大地領域中不同座標系統之轉換以進行歷史圖資之點位資訊比較,於地理資訊系統領域中,整合不同座標系統之圖資使其得以進行圖資之套疊分析,以及攝影測量領域中物空間座標與像空間座標之轉換等等,這些都需要應用座標轉換技術。三度空間座標轉換一般使用Helmert相似轉換或Molodensky轉換,這兩種模型均為非線性模型,通常以迭代方法求解轉換參數。進行迭代運算需要給定合理之初始值,否則解算得到之轉換參數解可能發散或不穩定。本研究使用Cayley轉換將非線性的Molodensky模型轉換為線性模型,因此不必迭代求解,可以直接求得轉換參數。本文將求解過程分為三個步驟:第一步先求尺度參數,第二步求旋轉角度,最後解算平移參數。由於非迭代之座標轉換演算法,其過程中不需要進行線性化且不需要轉換參數的初始值,因此可增進計算效率。此外,本研究也引入 Baarda的粗差偵錯理論,討論三階段非迭代求解和傳統迭代求解方法在偵測粗差行為及其影響的異同。研究結果顯示在粗差偵測上兩種求解方式並無顯著差異。
The coordinate transformation is an indispensable technology in Geomatics and is needed for the transformation beteween different coordinate systems for the comparisons of the history information in Geodesy, the integration of the geospatial information for the overlay analysis in Geographic Information Science, and the spatial transformation between the image and the object spatial systems in Photogrammetry etc. For three-dimensional coordinate transformations, Helmert and the Molodensky models are generally adopted. Those two transformation models are non-linear, and therefore an iterative method isnecessary for the computation of transformation parameters. Reasonable initial values of unknowns including the transformation parameters are essential while solving the nonlinear models by the iterative method. If the initial values of unknowns are not good enough, the solution may become divergent or unstable. In this research, the Cayley transform is adopted to transform the Molodensky model into a linear model. Consequently, the transformation unknown parameters can be solved without iterations. The overall solution processing is divided into three steps in this study. The scale parameter is first calculated. Second, the rotation angles are determined, and in last step the shift parameters are computed. For the non-iterative coordinate transformation algorithm adopted in this research, the transformation parameters can be solved without linearization, iterative calculation and initial values. The gross error detection based on the Baarda theory is introduced. A comparison of our method with the traditional iterative and linearized method is given in error detection. Our result shows that there is no significant differences in the gross error detection between these two methods.
尤瑞哲,2018,線性七參數相似轉換及應用(手稿),國立成功大學測量及空間資訊學系,台南。
尤瑞哲,2017,誤差理論,國立成功大學測量及空間資訊學系,台南。
李德仁,1992,誤差處理與可靠性理論, 測繪出版社,武漢。
江若慈、賴柏溶、曾義星,2016,臺灣歷史航照影像糾正對位,航測及遙測學刊第二十一卷第1期,第43-54頁。
朱展毅、饒見有,2010,以向量式遮蔽偵測為基礎利用空載傾斜攝影進行自動化牆面紋理貼圖,航測及遙測學刊第十五卷第4期,第325-341頁。
林文勇、劉至忠、劉正倫,2012,臺灣大地基準之一九九七座標系統2010年成果,中華民國地籍測量學會會刊第三十一卷第3期,第1-16頁。
高書屏,1987,臺灣地區虎子山座標系統轉換參數之初步研究,測量工程第二十九卷第4期,第1-13頁。
黃華尉,2000,TWD97 與 TWD67 二度 TM 座標轉換之研究,國立成功大學測量工程學系碩士論文,台南。
湯凱佩、劉燈烈、曾義星, 2004,以獨立模型法進行多測站地面光達資料的平差結合,第二十三屆測量學術及應用研討會,國立中興大學。
童俊雄,2005,空載光達系統誤差分析與航帶平差方法之探討,國立成功大學測量及空間資訊研究所學位論文,台南。
葉大綱、吳建廷、楊明遠、黃金城、韓治安,2011,利用七參數進行 TWD67, TWD97 與 e-GPS 定位座標之轉換-以中壢地區為例,中華民國地籍測量學會會刊第三十卷第1期,第14-29頁。
樂怡岑,2010,相似轉換之非迭代參數估計法,臺灣大學土木工程學研究所學位論文,台北。
Awange, J.L. and Grafarend, E.W., 2003. Nonlinear analysis of the three-dimensional datum transformation [conformal group ℂ 7 (3)]. Journal of geodesy, lssue 1-2, pp. 66-76.
Awange, J.L., Grafarend, E.W., 2003. Polynomial optimization of the 7-parameter datum transformation problem when only three stations in both systems are given. ZfV 128, pp. 266-270.
Baarda, W., 1967. Statisticl concepts in geodesy. Neth. Geod. Comm., New Series, Vol.2, No.4, Delft.
Baarda, W., 1968. A testing procedure for use in geodetic networks, Geod. Comm., New Series, Vol.2, No.5, Delft.
Cayley, A., 1876. An Elementary Treatise on Elliptic Functions. New York Public Library.
Förstner, W., 1983. Reliability and discesnability of extended Gauss-Markov Models. DGK, Series A, lssue No.98, Munich.
Heck, B., 1981. The influence of single observation errors result from a stabilization and the search for outliers in the observations. AVN, S. pp. 17-34.
Koch, K. R., 1980. Parameter estimation and hypothesis testing in linear models. Dümmler-Verlag. Bonn.
Mikhail, E.M. and Ackermann, F.E., 1976. Observations and least squares. IEP, New York.
Pope, A. J., 1976. The statistics of residuals and the detection of outliers. NOAA Technical Report NOS 65 NGS1, National Geodetic Survey, Rockville, Md.
Soler, T. and Gelder, B.H., 1987. On differential scale changes and the satellite Doppler system z‐shift. Geophysical Journal International 91, pp. 639-656.
Zavoti, J., 2012. A simple proof of the solutions of the Helmert- and the overdetermined nonlinear 7-parameter datum transformation. Acta Geodaetica, Geophysica Hungarica, Vol. 47(4), pp. 453-464.
Zavoti, J., 2013. New purpose of solving 2D and 3D non-linear characteristics (helmerts) transformations. Geomatic Releases XVI.