研究生: |
朱栢逸 CHU, Pai-Yi |
---|---|
論文名稱: |
以雙重金屬奈米顆粒修飾氧化銦錫鋅薄膜之氣體感測器之研製 Fabrication of Gas Sensors Based on InSnZnO Thin Films Decorated with Bimetallic Nano Particles |
指導教授: |
劉文超
Liu, Wen-Chau |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 165 |
中文關鍵詞: | 銀 、鈀 、鉑 、金 、奈米顆粒 、金屬半導體氧化物 、氧化銦錫鋅 、氣體感測器 、陣列 、氫氣 、氨氣 、甲醛 、乙醇 |
外文關鍵詞: | Palladium (Pd), Platinum (Pt), Gold (Au), Nano Particles (NPs), Semiconducting Metal Oxide (SMO), Indium Tin Zinc Oxide (ITZO), Gas Sensor, Array, Hydrogen (H2), Silver (Ag), Ammonia (NH3), Formaldehyde (HCHO), Ethanol (C2H5OH) |
相關次數: | 點閱:36 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文以半導體材料製備出氣體感測器分別針對氫氣、氨氣、甲醛、酒精等生活中常見或是工業中常使用到的揮發性有機化合物(VOCs)進行感測實驗及各項數據分析。元件薄膜所使用的半導體材料為氧化銦錫鋅(ITZO),透過銀奈米顆粒於薄膜底下可以增加薄膜的感測面積,再結合催化金屬(鈀、鉑、金) 奈米粒子於薄膜表面增加吸附反應以增強感測能力。最後會嘗試將三種不同的氣體感測器整合到同一顆元件上形成一個智慧型雙型態氣體感測陣列。感測器的薄膜均使用射頻磁控濺鍍沉積ITZO材料,奈米金屬顆粒以真空熱蒸鍍法製作,並使用快速熱退火系統進行特性改良。針對不同的氣體感測器由以下簡短進行說明。
在第二章中,薄膜表面的鈀(Pd)奈米粒子對於氫氣有良好的催化反應且奈米顆粒大幅的提高元件表面與氣體的接觸面積,大幅地提高了對於氫氣的感測效率,在最佳溫度225℃下對於1% 的氫氣反應出 64845 的感測倍率,具有142秒響應時間以及6秒的回復時間,最低可以檢測到1 ppm 的氫氣說明了其具備較低的感測極限。
在第三章節中,薄膜表面的鉑(Pt)奈米粒子對於氨氣及氫氣有良好的催化反應且奈米顆粒大幅的提高元件表面與氣體的接觸面積,大幅地提高了對於氨氣的感測效率,在最佳溫度275℃下對於1000 ppm的氨氣反應出 1531 的感測倍率,具有極佳的92秒響應時間以及9秒的回復時間,且在最低檢測濃度30 ppb的氨氣仍具有2.14的感測倍率說明了其具備極低極限的感測能力。
在第四章節中,薄膜表面的金(Au)奈米粒子對於甲醛與酒精有良好的催化反應且奈米顆粒大幅的提高元件表面與氣體的接觸面積,大幅地提高了對於甲醛和酒精的感測效率,在最佳溫度275℃下對於20 ppm的甲醛反應出441的感應倍率,具有良好55秒響應時間以及25秒的回復時間,且在最低檢測濃度50 ppb的甲醛仍具有1.05的感測倍率。
在第五章,將上述三個章節的元件以重新設計過的光罩定義指叉電極圖形整合成一個同時可以量測氫氣、氨氣、酒精的三型態氣體感測器。
在上述元件中皆有著感測能力表現良好的氣體感測器,並具有多項元件優勢:體積小、低製作難度、低製造成本、低反應時間、高感測倍率。
This studied reports the fabrication and characterization of semiconductor‐based gas sensors targeting common volatile organic compounds (VOCs) –hydrogen, ammonia, formaldehyde, and ethanol. Indium tin zinc oxide (ITZO) thin films were deposited by RF magnetron sputtering, with an Ag nanoparticle underlayer to increase effective surface area and catalytic Pd, Pt, or Au nanoparticles atop to enhance adsorption reactions. Sensor performance was evaluated via rapid thermal annealing–modified devices, and an integrated dual‐mode sensor array combining three distinct sensing elements was demonstrated. Detailed sensing experiments and data analyses confirm the enhanced sensitivity and selectivity of the proposed devices.
In Chapter 2, palladium (Pd) nanoparticles on the film surface exhibit excellent catalytic reactions to hydrogen (H2) and significantly increase the surface area of the device in contact with the gas, greatly enhancing the sensing efficiency for H2. Experimentally, sensing response of 64845 was achieved under 1% H2/air gas at 225°C, with a response (recovery) time of 142 s (6 s). The sensor could detect H2 as low as 1 ppm, indicating its low detection limit.
In Chapter 3, the platinum (Pt) nanoparticles on the surface of the film exhibit excellent catalytic reaction towards both ammonia (NH3) and hydrogen (H2), significantly increasing the contact area between the device surface and the gas. This greatly enhances the sensing efficiency for NH3. Experimentally, the sensing response of 1531 was achieved under 1000 ppm NH3/air gas at 275°C, with a response time of 92 s and a recovery time of 9 s. Moreover, even at the lowest detectable concentration of 30 ppb NH3, it still maintains a sensing response of 2.14, demonstrating its extremely low detection limit capability.
In Chapter 4, gold (Au) nanoparticles on the surface of the thin film exhibited good catalytic activity towards both formaldehyde (HCHO) and ethanol (C2H5OH), significantly increased the contact area between the device surface and the gas, leading to a notable improvement in formaldehyde and ethanol sensing efficiency. Experimentally, sensing response of 441 was achieved under 20 ppm HCHO/air gas at 275°C, with a response (recovery) time of 53 s (25 s). Moreover, even at the lowest detectable concentration of 50 ppb NH3, it still maintains a sensing response of 3.13, demonstrating its extremely low detection limit capability.
In Chapter 5, the devices from the aforementioned three chapters are integrated into a single three-mode gas sensor capable of measuring both hydrogen, ammonia, and ethanol gases.
Through redesigning the photomask, the defined interdigitated electrode patterns of the sensors are combined. Each of the mentioned devices exhibits excellent sensing capabilities and possesses several advantages: small size, low fabrication complexity, low manufacturing cost, low response time, and high sensitivity.
[1]. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection”, Sens. Actuators B Chem., vol. 162, no. 1, pp. 237-243, 2012.
[2]. C. Y. Chi, H. I. Chen, W. C. Chen, C. H. Chang, and W. C. Liu, “Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor”, Sens. Actuators B Chem., vol. 255, pp 3017-3024, 2018.
[3]. J. Zhang, J. Q. Hu, F. R. Zhu, H. Gong, and S. J. O’shea, “ITO thin films coated quartz crystal microbalance as gas sensor for NO detection”, Sens. Actuators B Chem., vol. 87, no. 1, pp. 159-167, 2002.
[4]. C. C. Hsu, J. S. Niu, and W. C. Liu, “Hydrogen Sensing Properties of a Tin Dioxide Thin Film Incorporated with Evaporated Palladium Nanoparticles”, ECS J. Solid State Sci. Technology, vol. 11, no. 2, article 027001, 2022.
[5]. G. Korotcenkov, V. Brinzari, J. R. Stetter, I. Blinov, and V. Blaja, “The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response”, Sens. Actuators B Chem., vol. 128, no. 1, pp 51-63, 2007.
[6]. J. H. W. D. Wit, “Electrical properties of In2O3”, J. Solid State Chem., vol. 8, no. 2, pp. 142-149, 1973.
[7]. M. Shahabuddin, A. Sharma, J. Kumar, M. Tomar, A. Umar, and V. Gupta, “Metal aluaters activated SnO2 thin film for low level detection of NH3 gas”, Sens. Actuators B Chem., vol. 194, pp. 410-418, 2014.
[8]. R. Bogue, “Detecting gases with light: a review of optical gas sensor technologies”, Sens. Rev., vol. 35, no.2, pp. 133-140, 2015.
[9]. T. E. Taouririt, A. Meftah, N. Sengouga, M. Adaika, S. Chala, and A. Mefath, “Effects of high-k gate dielectrics on the electrical performance and reliability of an amorphous indium–tin–zinc–oxide thin film transistor (a-ITZO TFT): an analytical survey”, Nanoscale, vol. 11, pp. 23459-23474, 2019.
[10]. H. Y. Liu, W. C. Hsu, J. H. Chen, P. H. Hsu, and C. S. Lee, “Amorphous ITZO Thin-Film Transistors by Using Ultrasonic Spray Pyrolysis Deposition”, IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1009-1013, 2020.
[11]. N. Jain, K. Singh, S. K. Sharma, and R. Kumawat, “Analog/RF Performance Analysis of a-ITZO Thin Film Transistor”, Silicon, vol. 14, pp. 9909-9923, 2022.
[12]. P. C. Chou, H. I. Chen, I. P. Liu, C. C. Chen, J. K. Liou, K. S. Hsu, and W. C. Liu, “On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor”, IEEE Sens. Journal, vol. 15, no. 7, pp. 3711-3715, 2015.
[13]. C. H. Chang, T. C. Chou, W. C. Chen, J. S. Niu, K. W. Lin, S. Y. Cheng, W. C. Liu, “A highly sensitive ammonia (NH3) sensor based on a tungsten trioxide (WO3) thin film decorated with evaporated platinum (Pt) nanoparticles”, IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1176-1182, 2020.
[14]. Y. Guo, S. Mei, K. Yuan, D. J. Wang, H. C. Liu, C. H. Yan, and Y. W. Zhang, “Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect”, ACS Catalysis, vol. 8, no. 7, pp. 6203-6215, 2018.
[15]. M. Boudart, M. A. Vannice, and J. E. Benson, “Adlineation, portholes and spillover”, Z. Phys. Chem., vol. 64, pp. 171-177, 1969.
[16]. H. I. Chen, C. Y. Hsiao, W. C. Chen, I. P. Liu, T. C. Chou, J. S. Niu, and W. C. Liu, “Formaldehyde sensing characteristics of a NiO-based sensor decorated with Pd nanoparticles and a Pd thin film”, IEEE Trans. Electron Device, vol. 65 no. 5, pp. 1956-1961, 2018.
[17]. N. Armaroli, and V. Balzani, “The Hydrogen issue”, Phys. Today, vol. 4, pp. 21-36, 2010.
[18]. R. Chen, X. Ruan, W. Liu, and C. Stefanini, “A reliable and fast hydrogen gas leakage detector based on irreversible cracking of decorated palladium nanolayer upon aligned polymer fibers”, Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 746-751, 2015.
[19]. G. W. Crabtree, M. S. Dresslhaus, and M. V. Buchanan, “The Hydrogen economy”, Phys. Today, vol. 57, no. 12, pp. 39-44, 2004.
[20]. S. K. Konda, and A. Chen, “Palladium based nanomaterials for enhanced hydrogen spillover and storage”, Materials Today, vol. 19, no. 2, pp. 100-108, 2016.
[21]. P. C. Yao, P. Y. Chu, D. H. Shih, W. C. Liu, “Formaldehyde gas sensing properties of a sputtered indium tin zinc oxide thin film decorated with evaporated gold metal”, Sens. Actuators B Chem., vol. 412, pp. 135824, 2024.
[22]. A. Sutka, M. Stingaciu, G. Mezinskis, and A. Lusis, “An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor”, J. Mater. Sci., vol. 47, pp. 2856-2863, 2012.
[23]. C. S. Rout, M. Hegde, A. Govindaraj, and C N R. Rao, “Ammonia sensors based on metal oxide nanostructures”, Nanotechnology, vol. 18, no. 20, pp.205504, 2007.
[24]. P. C. Yao, C. K. Kuo, J. C. Wang, P. Y. Chu, W. C. Hsu, and W. C. Liu, “Study of a New Hydrogen Sensor Based on the Synthesis of a Sputtered In–Sn–Zn-O Thin Film and Evaporated Palladium Nanoparticles”, IEEE Trans. Electron Device, vol. 71, no. 4, pp. 2612-2617, 2024.
[25]. Y. Magari, H. Makino, and M. Furuta, “Carrier generation mechanism and origin of subgap states in Ar-and He-plasma-treated In-Ga-Zn-O thin films”, ECS J. Solid State Sci. Technol., vol. 6, no. 8, pp. 101-107, 2017.
[26]. L. Zhang, Q. Guo, Q. Tan, Z. Fan, and J. Xiong, “High performance amorphous IGZO thin-film transistor based on alumina ceramic”, IEEE Access, vol. 7, pp. 184312-184319, 2019.
[27]. M. H. Kim, Y. S. Ko, H. S. Choi, S. M. Ryu, J. H. Jung, and D. K. Choi, “Negative bias illumination stress stability of dual-active layer amorphous indium-gallium-zinc-oxide thin-film transistor”, PHYS. STATUS SOLIDI A., vol. 213, no. 7, pp. 1873-1877, 2016.
[28]. D. Choi, S.J. Hong, and Y. Son, “Characteristies of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps”, Materials, vol. 7, no. 12, pp. 7662-7669, 2014.
[29]. Z. Ge, L. Wang, L. Xu, R. Zou, Y. Liu, D. Liu, B. Zhong, “Three-dimensional urchin-like K2Ti8O17 / Ag NPs composite as a SERS substrate for detecting folic acid and thiram”, Talanta, vol. 292, pp. 127926, 2025.
[30]. X. Wang, J. Chen, J. Zeng, Q. Wang, Z. Li, R. Qin, C. Wu, Z. Xie, and L. Zheng, “The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties”, Nanoscale, vol. 9, pp. 6643-6648, 2017.
[31]. I. P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, “Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor”, Sens. Actuators B Chem., vol. 291, pp. 148-154, 2019.
[32]. B. Y. Liu and W.C. Liu, “New room temperature ammonia gas sensor synthesized by a tantalum pentoxide (Ta2O5) dielectric and catalytic platinum (Pt) metals”, IEEE Trans. Electron Devices, vol. 67, no. 6, pp. 2566-2572, 2020.
[33]. R. Y. Peng, and W. C. Liu, “Study of a high-performance chemoresistive ethanol gas sensor synthesized with Au nanoparticles and an amorphous IGZO thin film”, IEEE Trans Electron Devices, vol. 68, no. 2, pp. 753–760, 2021.
[34]. A. C. Makrides, “Absorption of Hydrogen by Silver—Palladium Alloys”, J. Phys. Chem., vol. 68, no. 8, pp. 2160–2169, 1964.
[35]. M. Schwarzer, N. Hertl, F. Nitz, D. Borodin, J. Fingerhut, T. N. Kitsopoulos, and A. M. Wodtke, “Adsorption and Absorption Energies of Hydrogen with Palladium”, J. Phys. Chem. C, vol. 126, no. 34, pp. 14500–14508, 2022.
[36]. K. H. Chen, J. S. Niu, W. C. Liu, “Study of a new hydrogen gas sensor synthesized with a sputtered cerium oxide thin film and evaporated palladium nanoparticles”, IEEE Trans. Electron Devices, vol. 68, no. 8, pp.4077, 2021.
[37]. H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd–InP Schottky diode”, Sens. Actuators B Chem., vol. 92, pp. 6-16, 2003.
[38]. T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode. Sens. Actuators B Chem., vol. 129, pp. 292-302, 2008.
[39]. T. Y. Chen, H. I. Chen, C. C. Huang, C. S. Hsu, P. S. Chiu, P. C. Chou, and W. C. Liu, “Hydrogen-sensing characteristics of a Pd/GaN Schottky diode with a simple surface roughness approach”, IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 4079-4086, 2011.
[40]. J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres”, Sens. Actuators B Chem., vol. 123, no. 2, pp. 1040-1048, 2007.
[41]. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, and W. C. Liu, “Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode”, IEEE Sens. J., vol. 11, no. 5, pp. 1194-1200, 2010.
[42]. M.A. Sutton, J.W. Erisman, F. Dentener, and D. Moller, ¨Ammonia in the environment: from ancient times to the present”, Environ. Pollut, vol. 156, no. 3, pp. 583–604, 2008.
[43]. D. Kwak, Y. Lei, and R. Maric, “Ammonia gas sensors: a comprehensive review”, Talanta, vol. 204, pp. 713–730, 2019.
[44]. H. M. ApSimon, B.M. Barker, and S. Kayin, “Modelling studies of the atmospheric release and transport of ammonia in anticyclonic episodes”, Atmos. Environ., vol. 28, no. 4, pp. 665–678, 1944.
[45]. S. Yamulki, R. M. Harrison, and K. W. T. Goulding, “Ammonia surface-exchange above an agricultural field in Southeast England”, Atmos. Environ., vol. 30, no. 1, pp. 109–118, 1996.
[46]. R. L. Knight, R. H. Kadlec, and H. M. Ohlendorf, “The use of treatment wetlands for petroleum industry effluents”, Environ. Sci. Technol., vol. 33, no. 7, pp. 973–980, 1997.
[47]. R. Pandeeswari, and B. G. Jeyaprakash, “High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature”, Sens. Actuators B, Chem., vol. 195, pp. 206–214, 2014.
[48]. V. B. Raj, A.T. Nimal, Y. Parmar, M.U. Sharma, K. Sreenivas, and V. Gupta, “Crosssensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor”, Sens. Actuators B, Chem., vol. 147, no. 2, pp. 517–524, 2010.
[49]. D. D. Nguyen, D. V. Dang, and D. C. Nguyen, “Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature”, Adv. Nat. Sci., Nanosci. Nanotechnol., vol. 6, pp. 035006, 2015.
[50]. C. Fierro, “Ammonia adsorption on a model platinum (111) surface: a molecular orbital approach”, J. Phys. Chem., vol. 92, pp. 4401–4405, 1988.
[51]. K. Christmann, G. Ertl, and T. Pignet, “Adsorption of hydrogen on a Pt (111) surface”, Surf. Sci., vol 54, pp. 365-392, 1976.
[52]. X. Fu, Y. Wang, N. Wu, L. Gui, and Y. Tang, “Surface modification of small platinum nanoclusters with alkylamine and alkylthiol: an XPS study on the influence of organic ligands on the Pt 4f binding energies of small platinum nanoclusters”, J. Colloid Interf. Sci., vol. 243, no. 2, pp. 326-330, 2001.
[53]. Y. Kadıoglu, A. Demirkıran, H. Yaraneri, O. Üzengi Aktürk, “Investigation of NH3 and H2 adsorption on Ptn (n = 2–15, 18, 22, 24) clusters by using density functional theory”, J. Alloys Comp., vol. 591, pp. 188-200, 2014.
[54]. Z. Gao, X. Li, A. Li, C. Ma, X. Liu, J. Yang, and W. Yang, "Adsorption behavior of Pt embedded on N-doped graphene sheets toward NO and NH3 molecules", A.O.C, vol. 33, no. 9, 2019.
[55]. W. D. Kerns, K. L. Pavkov, D. J. Donofrio, E. J. Gralla, and J. A. Swenberg, “Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure”, Cancer Res., vol. 43, no. 9, pp. 4382-4392, 1983.
[56]. J. S. Niu, I. P. Liu, Y. L. Pan, J. H. Tsai, and W. C. Liu, “Study of a formaldehyde gas sensor based on a sputtered vanadium pentoxide thin film decorated with gold nanoparticles”, ECS J. Solid State Sci. Technol., vol. 10, pp. 087001, 2021.
[57]. J. G. Kang, J. S. Park, and H. J. Lee, “Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO”, Sens. Actuators B Chem., vol. 248, pp. 1011-1016, 2017.
[58]. K. H. Luo, I. P. Liu, C. C. Chiu, K. W. Lin, W. C. Hsu, and W. C. Liu, “Comprehensive study on the formaldehyde gas sensing performance of gold nanoparticle GTO films”, Sens. Actuators B Chem., vol. 398, pp. 134770, 2024.
[59]. P. X. Huang, F. Wu, B. L. Zhu, X. P. Gao, H. Y. Zhu, T. Y. Yan, and D. Y. Song, “CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst”, J. Phys. Chem. B., vol. 109, no. 41, pp. 19169-19174, 2005.
[60]. A. Ding, R. You, S. Luo, J. Gong, S. Song, K. Wang, B. Dai, and H. Sun, “Influence of annealing temperature on the optoelectronic properties of ITZO thin films”, Nanotechnology, vol. 32, no. 40, pp. 405701-405708, 2021.
[61]. Robert D. Brook, “Cardiovascular effects of air pollutions”, Clinical Science, vol. 115, pp. 175-187, 2008.
[62]. B. Mondal, B.Basumatari, J. Das, C. Roychaudhury, H. Saha, and N. Mukherjee, “ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing”, Sens. Actuators B Chem., vol. 194, pp. 389-396, 2014.
[63]. F. Wang, K. Hu, H. Liu, Q. Zhao, K. Wang, and Y. Zhang, “Low temperature and fast response hydrogen gas sensor with Pd coated SnO2 nanofiber rods”, Int. J. Hydrogen Energ., vol. 45, no. 11, pp. 7234-7242, 2020.
[64]. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, F. Guo, and Y. Zheng, “Hydrogen gas sensor based on SnO2 nanospheres modified with Sb2O3 prepared by one-step solvothermal route”, Sens. Actuators B Chem., vol. 331, pp. 129441, 2021.
[65]. D. Zhang, C. Jiang, and Y. Zhang, “Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route”, Sens. Actuators B Chem., vol. 242, pp. 15-24, 2017.
[66]. K. Anand, O. Singh, M. P. Singh, J. Kaur, and R. C. Singh, “Hydrogen sensor based on graphene/ZnO nanocomposite”, Sens. Actuators B Chem., vol. 195, pp. 409-415, 2014.
[67]. V. S. Bhati, S. Ranwa,M. Fanetti, M. Valant, and M. Kumar, “Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering”, Sens. Actuators B Chem., vol. 255, pp. 588-597, 2018.
[68]. Z. Zhang, C. Yin, L. Yang, J. Jiang, and Y. Guo, “Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor”, J. Alloys Comp., vol. 785, pp. 819-825, 2019.
[69]. G. Singh, and R. C. Singh, “Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol”, Sens. Actuators B Chem., vol. 282, pp. 373-383, 2019.
[70]. H. Ren, C. Gu, S. W. Joo, J. Zhao, Y. Sun, and J. Huang, “Effective hydrogen gas sensor based on NiO@rGO nanocomposite”, Sens. Actuators B Chem., vol. 266, pp. 506-513, 2018.
[71]. M. Shahabuddin, A. Umar, and M. Tomar, “Custom designed metal anchored SnO2 sensor for H2 detection”, Sens. Actuators B Chem., vol. 42, no. 7 pp. 4579–4609.
[72]. H. Kim, Y, Pak, Y, Jeong, W. Kim, J. Kim, and G. Y. Jung,” Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability”, Sens. Actuators B Chem., vol. 241, pp. 895–903, 2017.
[73]. C. Chen, W. Chen, Q, Liu, Y. Liu, G. Xiao, C. Chen, F. Li, and J. Zhou, “Electrospinning of Pd−In2O3 nanofibers for high-performance room temperature hydrogen sensors”, ACS Appl. Nano Mater., vol. 5, pp. 12646–12655, 2022.
[74]. K. Inyawilert, A. Wisitsoraat, C. Liewhiran, A. Tuantranont, and S. Phanichphant, “H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis”, Appl. Surf. Sci., vol. 475, pp. 191-203, 2019.
[75]. B. X. Zhu, C. C. Chiu, J. J. Jian, K. W. Lin, W. C. Hsu, and W. C. Liu, “Ammonia sensing performance of an Al-Doped SnO2 thin film decorated with platinum nano particles”, IEEE Electron Device Lett., vol. 44, no. 12, pp. 2043-2046, 2023.
[76]. R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang, D. Chen, and G. Shen, “SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors”, RSC Adv., vol. 7, pp. 52503-52509, 2017.
[77]. S. J. Chang, W. Y. Weng, C. L. Hsu, and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles”, Nano Commun. Netw., vol. 1, no. 4, pp. 283-288, 2010.
[78]. C. H. Chang, T. C. Chou, W.C. Chen, J. S. Niu, K. W. Lin, S. Y. Cheng, and W. C. Liu, “A highly sensitive ammonia (NH3) sensor based on a tungsten trioxide (WO3) thin film decorated with evaporated platinum (Pt) nanoparticles”, IEEE Trans. Electron Device, vol. 67, no. 3, pp. 1176-1182, 2020.
[79]. S.K. Sinha, “Low temperature detection of ammonia vapor based on Al-doped SnO2 nanowires prepared by thermal evaporation technique”, J. Asian Ceramic Soc., vol. 6, no. 3, pp. 232-239, 2016.
[80]. P. G. Su, and L. Y. Yang, “NH3¬ gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature”, Sens. Actuators B Chem., vol. 223, pp. 202-208, 2016.
[81]. I.P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, “Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor”, Sens. Actuators B Chem., vol. 291, pp. 148-154, 2019.
[82]. F. Yan, G. Shen, X. Yang, T. Qi, J. Sun, X. Li, and M. Zhang, “Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor”, Appl. Surf. Sci., vol. 479, pp. 1141-1147, 2019.
[83]. H.G. Moon, Y. Jung, S.D. Han, Y.S. Shim, W.S. Jung, T. Lee, S. Lee, J.H. Park, S.H. Baek, J.S. Kim, H.H. Park, C. Kim, and C.Y. Kang, “All villi-like metal oxide nanostructures-based chemiresistive electronic nose for an exhaled breath analyzer”, Sens. Actuators B Chem., vol. 257, pp. 295-302, 2018.
[84]. N. V. Duy, D. T. T. Trang, D. T. T. Le, C. M. Hung, M. Tonezzer, H. Nguyen, and N. D. Hoa, “Enhancement of NH3 gas sensing with Ag-Pt co-catalyst on SnO2 nanofilm towards medical diagnosis”, Thin Solid Film, vol. 767, pp. 139682, 2023.
[85]. L. Li. H. Du, S. Li, L. Liu, Y. Li, S. Xu, and Q. Liang, “A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temperature”, Chem. Phys. Lett., vol.713, pp. 235-241, 2018.
[86]. Y. Li, Chen, N. D. Deng, X. Xing, X. Xiao, and Y. Wang, “Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity”, Sens. Actuators B Chem., vol. 238, pp. 264-273, 2017.
[87]. J. Huang, H. Liang, J. Ye, D. Jiang, Y. Sun, X. Li, and Y. Du, “Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature”, Sens. Actuators B Chem., vol. 346, pp. 130568, 2021.
[88]. X. Ma, J. Shen, D. Hu, L. Sun, Y. Chen, M. Liu, and S. Ruan, “Preparation of three-dimensional Ce-doped Sn3O4 hierarchical microsphere and its application on formaldehyde gas sensor”, J. Alloys Compd., vol. 726, pp. 1092-1100, 2017.
[89]. L. Wang, Y. Li, W. Yue, S. Gao, C. Zhang, and Z. Chen, “High-performance formaldehyde gas sensor based on Cu-doped Sn3O4 hierarchical nanoflowers”, IEEE Sens. J., vol. 20, no. 13, pp. 6945-6953, 2020.
[90]. D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, and F. Meng, “Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets”, Sens. Actuators B Chem., vol. 273, pp. 418-428, 2018.
[91]. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, and J. Xu, “Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone”, Sens. Actuators B Chem., vol. 283, pp. 590-601, 2019.
[92]. Ran Xu, L. X. Zhang, M. W. Li, Y. Y. Yin, J. Yin, M. Y. Zhu, J. J. Chen, Y. Wang, and L. J. Bie, “Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor”, Sens. Actuators B Chem., vol. 289, pp. 186-194, 2019.
[93]. H. Chen, W. Jiang, L. Zhu, and Y. Yao, “Amorphous In–Ga–Zn–O powder with high gas selectivity towards wide range concentration of C2H5OH”, Sensors, vol. 17, no. 6, pp. 1203, 2017.
[94]. J. Guo and C. Peng, “Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties,” Ceram. Int., vol. 41, no. 2, pp. 2180–2186, 2015.
[95]. K. W. Kim et al., “The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition,” Sens. Actuators B, Chem., vol. 123, no. 1, pp. 318–324, 2007.
[96]. C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, “Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor,” Chem. Commun., vol. 47, no. 18, pp. 5148–5150, 2011.
[97]. X. Liu, J. Zhang, X. Guo, S. Wu, and S. Wang, “Porous α-Fe2O3 decorated by au nanoparticles and their enhanced sensor performance”, Nanotechnology, vol. 21, no. 9, pp. 095501, 2010.
[98]. Z. Wei et al., “Ultra-thin sub-10 nm Ga2O3-WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level,” Sens. Actuators B, Chem., vol. 287, pp. 147–156, 2019.
[99]. H. Zhao, Y. Li, L. Yang, and X. Wu, “Synthesis, characterization and gas-sensing property for C2H5OH of SnO2 nanorods,” Mater. Chem. Phys., vol. 112, no. 1, pp. 244–248, 2008.
[100]. S. Yan, J. Xue, and Q. Wu, “Synchronous synthesis and sensing performance of α-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection”, Sens. Actuators B, Chem., vol. 275, pp. 322–331, 2018.
[101]. Y. H. Choi, D. H. Kim, S. H. Hong, and K. S. Hong, “H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route”, Sens. Actuators B, Chem., vol. 178, pp. 395–403, 2013.
[102]. R. Y. Peng and W. C. Liu, “Study of a High-Performance Chemoresistive Ethanol Gas Sensor Synthesized With Au Nanoparticles and an Amorphous IGZO Thin Film”, IEEE Trans. Electron Device, vol. 67, no. 2, pp. 1176-1182, 20.