| 研究生: |
陳彥夫 Chen, Yan-Fu |
|---|---|
| 論文名稱: |
以修飾有分子探針之金奈米粒子的表面增顯拉曼散射技術進行Protein A免疫分析 The SERS Immunoassay for Detecting Protein A by Using Molecular Probes-Modified Gold Nanoparticles |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 奈米金粒 、表面增顯拉曼散射 、金黃色葡萄球菌 、免疫分析 |
| 外文關鍵詞: | Staphylococcus aureus, Immunoassay, Gold nanoparticle, Surface-enhanced Raman scattering |
| 相關次數: | 點閱:205 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據美國疾病與預防控制中心之國家院內感染監視系統及流行病原監控的統計資料,顯示院內血管通路的微生物感染最常見為金黃色葡萄球菌(S. aureus),佔有13%的高比率。又因感染得到菌血症誘發之敗血症常是多重症加護病房病患最主要的死因之一,所以臨床檢驗上,快與準即為能救命與否的關鍵。傳統的檢測技術為酵素連結免疫分析(ELISA),然此法在檢體前處理與測定步驟相當繁瑣,且需耗費大量的人力與時間。基於此,本研究以傳統三明治模型ELISA為雛型做改良,將粒徑約20 nm的金奈米膠體溶液 (5.4×1011 particles/mL),與抗體免疫球蛋白G (80 μg/ml)於pH值為6.5(抗體之等電位點, pI=7.4)的磷酸鹽緩衝溶液中以等體積混合,再予以離心純化。其後把表面被覆予特異性抗體的奈米金粒(IgG-AuNP)和具獨特指紋區的拉曼活性分子探針5,5’-二硫基-雙(2-硝基苯甲酸) (DTNB),形成在1340 cm-1具有很強的拉曼訊號之奈米金粒(IgG-AuNP-DTNB)後,因AuNP之間DTNB的表面增顯散射(SERS)作用,而可達訊號放大的目的。以常引起菌血症之S. aureus細胞壁所特有的蛋白質Protein A作為抗原,讓其在鍍金基盤上先物理性吸附有IgG層行親和性作用後,清洗後投入IgG-AuNP-DTNB,期以SERS作用中DTNB的1340 cm-1強度來呈現Protein A的濃度,因而取代原本帶有酵素的二次抗體之ELISA技術。我們將Protein A調整在10-6至10-13 g/ml之間進行偵測,結果顯示此量測方式之檢測極限值可達10-11 g/ml,相較於傳統免疫分析技術僅在10-8至10-9 g/ml,靈敏度約提高了2到3個級數。本研究進行之際也感受到,若(1)再擇取更佳的分子探針,並(2)改良具SERS效能功能性之奈米金粒,(3)金基盤的粗糙度,以及(4)將激發雷射改用較短波長(如532 nm之Nd:YAG雷射),若許可將檢測極限再往下推進2-4個級數。
According to the statistics of National Nosocomial Infection Surveillance System in Centers for Disease Control and Prevention and Surveillance and Control of Pathogens of Epidemiologic Importance, Staphylococcus aureus was the most common infectant of nosocomial bloodstream microbial infection detected. It accounts for 13 percentages at the high rate. Sepsis induced by bacteremia is one of the main causes of death of critically ill patients in intensive care unit. In clinical tests, the most traditional medical examination technique is enzyme-linked immunosorbent assay (ELISA). However, this method in the sample pretreament and measurement steps is rather cumbersome, and would entail a lot of manpower and time.For this reason, this study is modified from traditional sandwich ELISA model as prototype. We mixed gold colloidal solution (20 nm, 5.4×1011 particles/mL) and Immunoglobulin G (IgG) (80 μg/ml) in phosphate buffer solution (pH=6.5) at pH below isoelectric point (pI=7.4) of antibodies isovolumically. After centrifugation, 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) can be employed as Raman-active molecular probes to modify on IgG-coated gold nanoparticles. This molecule has strong Raman signals at 1340 cm-1, and the gold nanoparticle can amplify the Raman scattering of molecular probe. The enzyme-linked secondary antibodies in traditional immunoassay are replaced with the immunogold molecular probes we fabricated. Protein A is the specific antigen of Staphylococcus aureus, will be used as a model system. The antigen concentrations were adjusted to be 10-6~10-13 g/ml, and detected by surface-enhanced Raman scattering (SERS). As a result, it showed that the detection of limit could reach to 10-11 g/ml. Comparing with traditional immunoassay only to 10-8~10-9 g/ml, the sensitivity could promote 2~3 order of magnitude higher. In addition to improve the sensitivity at low concentration, this method may also provide us Raman spectra and information of biological samples. We may (1) choose better molecular probes, and (2) change type of nanoparticles with higher SERS efficiency (3) increase roughness of substrate, and (4) switch to shorter LASER excitation wavelength (e.g. 532 nm Nd : YAG LASER), to lower the detection limit.
[1] 蔡文城,實用臨床微生物診斷學,九州圖書,p.360 (2000)。
[2] C. H. Chen, H. C. Ding, T. C. Chang, Rapid Identification of Bacillus cereus Based on the Detection of a 28.5-Kilodalton Cell Surface Antigen, Journal of Food Protection, Vol. 64, 348 (2001)
[3] 郭奕玲、沈慧君,科學的榮耀-諾貝爾物理學獎百年回顧,科技圖書,p.191 (2002)。
[4] A. Smekal, Naturwiss., Vol. 11, p.873 (1923)
[5] C. V. Raman and K. S. Krishnan, Nature, Vol. 121, p.501 (1928)
[6] G. Keresztury, ‘Raman Spectroscopy: Theory’, in “Handbook of Vibrational Spectroscopy”, John Wiley & Sons, Chichester, Vol. 1, p.71 (2001)
[7] P. R. Griffiths, ‘Introduction of Vibrational Spectroscopy’, in “Handbook of Vibrational Spectroscopy”, John Wiley & Sons, Chichester, Vol. 1, p.33 (2001)
[8] M. Fleischmann, SERS Effect from Some Compounds, Chemical Physics Letters, Vol. 26, p.163 (1974)
[9] Skoog, Holler, Nieman, ‘Raman Spectroscopy’, in “Principles of Instrumental Analysis 5/e”, Harcourt Brace & Company, p.429 (1998)
[10] E. Smith & G. Dent, ‘Resonance Raman Scattering’, in “Modern Raman Spectroscopy: A Practical Approach”, John Wiley & Sons, p.93 (2005)
[11] E. Smith & G. Dent, ‘Surface-Enhanced Raman Scattering and Surface-Enhanced Resonance Raman Scattering’, in “Modern Raman Spectroscopy: A Practical Approach”, John Wiley & Sons, p.114 (2005)
[12] M. Moskovits, ‘Surface-Enhanced Raman Spectroscopy: a Brief Perspective’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, p.1 (2006)
[13] G. C. Schatz, Matthew A. Young, R. P. Van Duyne, ‘Electromagnetic Mechanism of SERS’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, p.19 (2006)
[14] M. I. Stockman, ‘Electromagnetic Theory of SERS’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, p.19 (2006)
[15] Milton Kerker, D. S. Wang, H. Chew, Surface Enhanced Raman Scattering (SERS) by Molecules Adsorbed at Spherical Particles, Applied Optics, Vol. 19, p.4159 (1980)
[16] H. X. Xu, M. Kall, ‘Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, p.87 (2006)
[17] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-Enhanced Raman Scattering, Journal of Physics: Condensed Matter, Vol. 4, p.1143 (1992)
[18] A. Campion, P. Kambhampati, Surface-Enhanced Raman Scattering, Chemical Society Reviews, Vol. 27, p.241 (1998)
[19] C. M. Muntean, G. J. Puppels, J. Greve, G. M. J. Segers-Nolten, S. Cinta-Pinzaru, Raman Microspectroscopic Study on Low-pH-induced DNA Structural Transitions in the Presence of Magnesium Ions, Journal of Raman Spectroscopy, Vol. 33, p.784 (2002)
[20] S. A. Lee, M. Schwenker, A. Anderson, L. Lettress, Temperature-dependent Raman and Infrared Spectra of Nucleosides. IV – Deoxyadenosine, Journal of Raman Spectroscopy, Vol. 35, p.324 (2004)
[21] A. Toyama, N. Fujimoto, N. Hanada, J. Ono, E. Yoshimitsu, A. Matsubuchi, H. Takeuchi, Assignments and Hydrogen Bond Sensitivities of UV Resonance Raman Bands of the C8-deuterated Guanine Ring, Journal of Raman Spectroscopy, Vol. 33, p.699 (2002)
[22] A. Weselucha-Birczynska, G. D. Strahan, M. Tsuboi, K. Nakamoto, Journal of Raman Spectroscopy, Interaction of Bleomycin A2 with DNA Studied by Resonance Raman spectroscopy: Intercalation or Groove Binding, Vol. 31, p.1073 (2000)
[23] B. Abraham, C. V. Sastri, B. G. Maiya, S. Umapathy, Resonance Raman Spectroscopic Studies of [Ru(phen)2qdppz]2+ and its Interactions with Calf Thymus DNA, Journal of Raman Spectroscopy, Vol. 35, p.13 (2004)
[24] A. J. D. Moreno, P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, M. A. M. Nogueira, J. M. A. Almeida, M. A. R. Miranda, C. M. R. Remedios, J. M. Sasaki, Low-temperature Raman Spectra of Monohydrated L-asparagine Crystals, Journal of Raman Spectroscopy, Vol. 35, p.236 (2004)
[25] J. L. B. Faria, F. M. Almeida, O. Pilla, F. Rossi, J. M. Sasaki, F. E. A. Melo, J. M. Filho, P. T. C. Freire, Raman Spectra of L-histidine Hydrochloride Monohydrate Crystal, Journal of Raman Spectroscopy, Vol. 35, p.242 (2004)
[26] B. L. Silva, P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, M. A. Pimenta, M. S. S. Dantas, High-pressure Raman Spectra of L-threonine Crystal, Journal of Raman Spectroscopy, Vol. 31, p.519 (2000)
[27] S. Ramaswamy, M. Umadevi, R. K. Rajaram, V. Ramakrishnan, Infrared and Raman Spectral Studies of L-ornithine Nitrate, Journal of Raman Spectroscopy, Vol. 34, p.806 (2003)
[28] N. N. Brandt, A. Y. Chikishev, J. Greve, N. I. Koroteev, C. Otto, I. K. Sakodynskaya, CARS and Raman Spectroscopy of Function-Related Conformational Changes of Chymotrypsin, Journal of Raman Spectroscopy, Vol. 31, p.731 (2000)
[29] S. Cavalu, S. Cinta-Pinzaru, N. Leopold, W. Kiefer, Raman and Surface Enhanced Raman Spectroscopy of 2,2,5,5-tetramethyl-3-pyrrolin-1
-yloxy-3-carboxamide Labeled Proteins: Bovine Serum Albumin and Cytochrome c, Biopolymers, Vol. 62, p.341 (2001)
[30] G. J. Thomas Jr., New Structural Insights from Raman Spectroscopy of Proteins and their Assemblies, Biopolymers, Vol. 67, p.214 (2002)
[31] X. J. Zhao, G. Balakrishnan, E. G. Moore, T. G. Spiro, A High Temperature Raman Study of Eu1-x Kx TiO3 Prepared under High Pressure and High Temperature, Journal of Raman Spectroscopy, Vol. 31, p.394 (2000)
[32] Y. G. Zheng, M. A. Wagner, M. S. Jorns, P. R. Carey, Selective Enhancement of Ligand and Flavin Raman Modes in Charge-transfer Complexes of Sarcosine Oxidase, Journal of Raman Spectroscopy, Vol. 32, p.79 (2001)
[33] D. H. Murgida, E. Schleicher, A. Bacher, G. Richter, P. Hildebrandt, Resonance Raman Spectroscopic Study of the Neutral Flavin Radical Complex of DNA Photolyase from Escherichia coli, Journal of Raman Spectroscopy, Vol. 32, p.551 (2001)
[34] A. Torreggiani, G. Bottura, G. Fini, Interaction of Biotin and Biotinyl Derivatives with Avidin: Conformational Changes upon Binding, Journal of Raman Spectroscopy, Vol. 31, p.445 (2000)
[35] V. D. Noto, L. D. Via, P. Zatta, Conformational Studies of the Trypsin-aluminum(III) Complex in Solution by Raman and Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy, Journal of Raman Spectroscopy, Vol. 30, p.209 (1999)
[36] P. J. Caspers, G. W. Lucassen, G. J. Puppels, Combined in vivo Confocal Raman Spectroscopy and Confocal Microscopy of Human Skin, Biophysical Journal, Vol. 85, p.572 (2003)
[37] S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, H. Hamaguchi, Near-infrared Multichannel Raman Spectroscopy toward Real-Time in vivo Cancer Diagnosis, Journal of Raman Spectroscopy, Vol. 33, p.498 (2002)
[38] 張立德、牟季美,奈米材料和奈米結構,滄海書局,p.43 (2002)
[39] M. C. Daniel, D. Astruc, Gold Nanoparticles-Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, Vol. 104, p.293 (2004)
[40] 郭清癸,黃俊傑,牟中原,金屬奈米粒子的製造,物理雙月刊,第23卷第6期,p.614 (2001)
[41] H. Kunchan, T. Peijane, L. Yashiuan, C. Yuchie, Using Biofunctionalized Nanoparticles to Probe Pathogenic Bacteria, Analytical Chemistry, Vol. 76, p.7162 (2004)
[42] M. Seydack, Nanoparticle Labels in Immunosensing Using Optical Detection Methods, Biosensors and Bioelectronics, Vol. 20, p.2454 (2005)
[43] S. P. Xu, X. H. Ji, W. Q. Xu, X. L. Li, L. Y. Wang, Y. B. Bai, B. Zhao, Y. Ozaki, Immunoassay using Probe-Labelling Immunogold Nanoparticles with Silver Staining Enhancement via Surface-Enhanced Raman scattering, The Analyst, Vol. 129, p.63 (2004)
[44] J. Kneipp, H. Kneipp, L. R. William, K. Kneipp, Optical Probes for Biological Applications Based on Surface-Enhanced Raman Scattering from Indocyanine Green on Gold Nanoparticles, Analytical Chemistry, Vol. 77, p.2381 (2005)
[45] G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, Vol. 82, p.70 (1959)
[46] P. W. Riddles, R. L. Blakeley, B. Zerner, Reassessment of Ellman's reagent, Methods in Enzymology, Vol. 91, p.49 (1983)
[47] 陳志在,碩士論文「結合表面增顯拉曼散射及奈米粒子免疫分析技術之研發」,成功大學醫學工程研究所 (2006)
[48] K. Kimura, S. Takashima, H. Ohshima, Molecular Approach to the Surface Potential Estimate of Thiolate-Modified Gold Nanoparticles, Journal of Physical Chemistry B, Vol. 106, p.7260 (2002)