| 研究生: |
陳俊州 Chen, Chun-Chou |
|---|---|
| 論文名稱: |
生態工法在河溪岸坡穩定之應用與分析 The Application and Analysis of Ecological Engineering Method in Stream Bank Stability |
| 指導教授: |
常正之
Charng, Jeng-Jy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 生態工法 |
| 外文關鍵詞: | Ecological Engineering Method |
| 相關次數: | 點閱:40 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對河溪岸坡施作護岸生態工法前、後利用二維有限元素程式進行數值模擬。首先,本研究為了對鍍鋅鐵桿焊接箱籠(galvanized iron rod welded box gabion)單元之力學行為有所瞭解,同時又考量目前現地及實驗室既有量測資料之匱乏,乃先行針對六邊形金屬線格網箱籠單元結構側向膨脹束制與未束制單向壓縮試驗之力學行為進行模擬探討,以為爾後研究之參考。其後,再對最惡劣情況之自然河溪岸坡(暴雨過後滿流消退期間,河岸土層處於飽和狀態之情況)施作穩定工前、後進行滲流、變形分析與檢核整體安全性。再以鍍鋅鐵桿焊接箱籠為例,模擬河溪在常水位下,探討河床受沖刷影響時,河溪岸坡產生的位移、時間與整體安全係數的關係。
在確認護岸生態工法確實能提高自然河溪岸坡之穩定性後,及進行相關影響參數之研究,例如坡高、鍍鋅鐵桿箱籠勁度、沖刷率、時間,並探討各參數對整體變形與安全係數之影響。在最惡劣情況之岸坡上施作鍍鋅鐵桿焊接箱籠穩定工後,河溪岸坡整體安全性得以提高。而穩定性提高的主因為箱籠構造物的強度及自重亦將強迫潛在滑動破壞面往河岸土層較深處發展延伸。在最惡劣情況之岸坡上施作切枝植入加勁舖石穩定工後,河溪岸坡整體安全性得以提高。而穩定性提高的主因之一為坡趾舖石構造物拉長了滲流線降低坡趾處滲流力減緩滲流水作用力對坡趾之影響。另外,舖石自重亦將強迫潛在滑動破壞面往河岸土層較深處發展延伸。
none
[1] Apmann, R. P. (1972). Flow processes in open channel bends. Journal of the Hydraulics Division, ASCE 98(HY5):795-810.
[2] Arulanandan, K., Gillogley, E., and Tully, R. (1980). “Development of a quantitative method to predict critical shear stress and rate of erosion of natural undisturbed cohesive soils.” Report GL-80-5, U.S. Army Engineers, Waterways Experiment Station, Vicksburg, Miss.
[3] Carson, M. A., and Kirkby M. J. (1972). Hillslope form and process. Cambridge University Press, London.
[4] Chang, H. H. (1982). “Mathematical model for erodible channels.” J. Hydr. Div., ASCE, 108(5), 678-689.
[5] Chen, W. F. (1975). Limit amalysis and soil plasticity. Elsevier Scientific Publishing Co., New York.
[6] Colin O'Loughlin and Ziemer R. R. (1982). "The importance of root strength and deterioration rates upon edaphic in steepland forests", Oregon. Oregon State University, Corvalis, Oregon 70-78.
[7] COLORADO TEST CENTER INC. (1983). Tensile Testing of small Diameter Wire Mesh, Denver.
[8] Darby, S. E., and Thorne C. R. (1996a). “Development and testing of riverbank-stability analysis.” J. Hydr. Engrg., ASCE, 122(8), 443-454
[9] Gray, D. H., and Sotir, R. B. (1995). “Biotechnical and soil bioengineering slope stabilization” John Wiley & Sons,Inc.
[10] FISRWG (Federal Interagency Stream Restoration Working Group), 15 Federal Agencies of United States Government, Stream Corridor Restoration, Principles, Processes, and Practices, October, 1998.
[11] Gray, D. H., and Megaham, W. F. (1981). "Forest vegetation removal and slope stability in the Idaho batholith", Intermountain forest and range exprement station research paper int-271, Forest service U.S.
[12] Gray, D.H. (1970). "Effect of forest clear-cutting on the stability of natural slopes", Bull.Assn.Engg. Geol., 7(1), 45-66.
[13] Waldron, L. J. (1977). "The shear resistance of root-permeated homogeneous and stratified soil", Soil SCI. SOC. AM.J., VOL.41, 843-849.
[14] LABORATORIO SPERIMENTALE PER LA RESISTENZA DEI MATERIALI (1979). Certificato delle prove di carico su gabbioncini in rete metallica riempiti da pietrame, Universita di Bologna.
[15] Lutton, R. J. (1974). Use of loess soil for modeling rock mechanics. Report S-74-28. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.
[16] MACCAFERRI Gabions (1987). Retaining structures.
[17] Masterman, R., and Throne, C. R.
(1992). "Predicting influence of bank vegetation on channel capacity." J. Hydr. Engrg., 118(7), 1052-1058.
[18] Millar, R. G., and Quick, M. C. (1993). “Effect
of bank stability on geometry of gravel rivers.” J. Hydr. Engrg., ASCE, 119(12), 1334-1363.
[19] Odgaard, J. (1987). Stream-bank erosion along two rivers in Iowa. Water Resources Research 23(7):1225-1236.
[20] Odgaard, J. (1989). River-meander model I: development.Journal of Hydraulic Engineering 115(11):1433-1450.
[21] OFFICINE MACCAFERRI S.p.A. (1983), Gabbioni Maccaferri, Labanti & Nanni Bologna, Ristampa.
[22] Osman, A. K., and Throne, C. R. (1988) “Riverbank stability analysis, I-theory” Journal of Hydraulic Engineering, ASCE, 114(2), 134-150.
[23] Osman, A. M. (1985). “Channel width response to changes in flow hydraulics and sediment load.” Thesis presented to Colorado State University, at Fort Collins, Colo., in partial fulfillment of the requirements of the degree of Doctor of Philosophy.
[24] Osman, A. M., and Throne, C. R.
(1988a). "Riverbank stability analysis. II: Applications." J. of Hydr. Engrg., 114(2), 151-172.
[25] PLAXIS (1998) , User’s Mannual Version 7. 1
[26] PLAXIS (2002) , User’s Mannual Version 8.1.
[27] Simon, A. (1992). Energy, time, and channel evolution in catastrophically disturbed fluvial systems. In Geomophic systems: Geomophology, ed. J.D. Phillips and W.H. Renwick, vol. 5, 345-372
[28] Simon, A. (1994). Gradation processes and channel
evolution in modified west Tennessee streams: process, response, form. U.S. Geological Survey Professional Paper 1470.
[29] Thorne, C. R. (1981). “Field measurements of rate of bank erosion and bank material strength.” Erosion and sediment transport measurement. Proc., Florence Symp., International Association for Hydraulic Science Publ. No.133, Florence, Italy.
[30] Thorne, C. R. (1982). “Process and mechanisms of river bank erosion.” Gravel-bed rivers, R. D. Hey, J. C. Bathurst, and C. R. Thorne, eds., John Wiley and Sons, Ltd., Chichester, U. K., 227-271.
[31] Tien, H. Wu and Alex Watson, (1998). "In situ shear test of soil blocks with roots", Can. Geotech. J. 35, 579-590.
[32] Tien, H. Wu. And William, P. McKinnell III and Douglas N. Swanston, (1979). "Strength of tree roots and landslides on Prince of Wales Island”, Alaska. Can. Geotech. J. 16, 19-33.
[33] Tien, H. Wu., (1976). "Investigation of landslides on prince of wales island Alaska", Geotechnical engineering report No.5, Department civil engineering ohio state university, Columbus, 94P.
[34] Operstein, V., and Frydman S. (2000). "The influence of vegetation on soil strength", Ground Improvement 4, No.2, 81-89.
[35] Operstein, V., and Frydman S. (2001). "Numerical simulation of direct shear of root-reinforced soil", Ground Improvement 5, 41-48.
[36] Operstein, V., and Frydman S. (2002), "The stability of soil slopes stabilised with vegetation", Ground Improvement 6, No.4, 163-168.
[37] Williams, and Wolman, M.G. (1984). Downstream effects of dams on alluvial rivers. U.S. Geological Survey Professional paper 1286.
[38] Wilson, K. V. and Turnipseed D. P. (1994). Geomorphic response to channel modification of Skuna River at the state Highway 9crossing at Bruce, Calhoun County, Mississippi. U.S. Geological Survey Water-Resources Investigations Report 94-4000.
[39] 日本國土開發技術研究所,(1999),護岸的力學設計法,山海堂。
[40] 吳正雄,(1990),"崩塌地優勢草本植物根力特性之研究",中華水土保持學報 21(1),P.27-54。
[41] 吳正雄,(1993),樹根力與坡面穩定關係之研究,中華水土保持學報 24(2),P23-37。
[42] 林信輝,(2001),水土保持植生工程,P.78-93。
[43] 林德貴,(2002),河溪生態工法構造物設計實務,自然生
態工法技術研討會,中華水土保持學會,12月13日,P.50-92。
[44] 林德貴,鄧鳳儀, Bergado, D. T. (2003). 六邊形金屬線格網加勁箱籠擋土牆之變形分析, 第10屆大地工程研討會,2003,10月2日~4日,台北,論文編號E-311, P.1013-1016。
[45] 林德貴、林信輝(2002),自然生態工法設計與分析–以箱籠護岸為例,自然生態工法實務研討會,行政院農委會水土保持局,10月24日,P.53-72。
[46] 經濟部水資源局,(2001),生態工法技術參考手冊。
[47] 蔡光榮,(1994),"台灣西南部泥岩地區植生護坡之根系力學模式應用性探討",地工技術雜誌 第48期,P.49-61。
[48] 行政院農委會水土保持局,(2002),自然生態工法實務研討會。
[49] 行政院農委會水土保持局,(2003),自然生態工法實務與創新研討會。
[50] 郭瓊瑩、郭育任,林大元,(1995),流域河川生態設計準則,文化大學景觀學系。