| 研究生: |
陳亭儒 Chen, Ting-Ju |
|---|---|
| 論文名稱: |
應變速率及溫度在粉末冶金高速鋼(ASP 60)變形行為微觀結構上的效應分析 Effects of Strain Rate and Temperature on the Deformation Behaviour and Microstructural Evolution of Powder Metallurgical High-Speed Steel (ASP 60) |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 霍普金森試驗機 、材料高速變形 、負應變速率敏感性 、破壞形貌 、差排結構 |
| 外文關鍵詞: | split-Hopkinson Pressure Bar, dynamic behaviour, negative strain rate sensitivity, fracture morphology, dislocation substructure |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
粉末冶金高速鋼 ASP 60 是一種常用於切削工具與模具的合金材料,具備優異的機械性能。為提供其工程元件設計與開發之應用,本研究藉由準靜態壓縮與動態撞擊試驗,探討不同應變速率(1.0×10^-3 至 6.0×10^3 s^-1)與溫度(-195 °C 至 1000 °C)對 ASP 60 機械行為的影響,包含真應力–真應變曲線、加工硬化特性、應變速率敏感性、溫度敏感性與破壞機制,以及微觀結構的變化。研究結果顯示,ASP 60 在 -195 至 800 °C 的動態條件下具有超過 1400 MPa 的高強度;而在 700 至 1000 °C 的準靜態條件下,其塑流應力仍可維持 390 MPa 以上。整體而言,其塑流應力隨真應變增加而提升,隨溫度升高則呈下降趨勢;此外,相較於準靜態條件,動態變形下的材料塑流阻抗變化更為明顯。同時,實驗結果顯示在動態變形條件下,ASP 60 隨應變速率及溫度的變化,呈現不同的正向與負向的應變速率敏感性,且其轉換溫度約為 620 °C左右;然而在準靜態條件下,ASP 60 皆顯現正向應變速率敏感性。熱活化體積方面,無論在準靜態與動態條件下,其值隨著溫度升高而增加,隨真應變增加則減少。本研究亦成功應用 Zerilli–Armstrong HCP 模型準確描述 ASP 60 在正向應變速率敏感性下的變形行為。而透過光學顯微鏡(OM)與掃描式電子顯微鏡(SEM)觀察破壞形貌,發現 ASP 60 的破壞模式隨著變形條件而改變,且與巨觀之負向應變速率敏感性密切相關。此外,透過穿透式電子顯微鏡(TEM)觀察變形後的微觀組織,發現差排結構與析出物隨著應變速率與溫度改變而呈現不同的形貌,進而導致巨觀機械強度的差異。進一步分析顯示,ASP 60 之塑流應力皆與差排密度的平方根成正比。綜合以上結果,本研究提供 ASP 60 在不同變形條件下的機械性質與微觀組織特性,可作為高性能工程元件設計與實際應用的依據。
Powder metallurgical high-speed steel ASP 60 is a commercial alloy widely used in cutting tools owing to its superior mechanical characteristics. Accordingly, the study investigates the effects of strain rate (1.0×10^-3–6.0×10^3 s^-1) and temperature (-195 °C–1000 °C) on its mechanical behaviours through dynamic and quasi-static compression tests. The analysis provides insights into its true stress-strain responses, work hardening behaviours, strain rate sensitivities, temperature sensitivities, as well as fracture mechanisms and substructural evolution, which are essential for engineering component design.
The findings indicate that the flow stress exceeds 1400 MPa during dynamic deformation in a temperature range of -195–800 °C, while reaching 390 MPa at a quasi-static strain rate of 10^0 s^-1 between 700 °C and 1000 °C. The flow stress exhibits an increasing trend with true strain but decreases with rising temperature under both dynamic and quasi-static conditions, with dynamic loading exhibiting a more rapid variation in plastic flow resistance. Both the positive and negative strain rate sensitivities are observed under dynamic loading conditions with a transition temperature identified at 620 °C, while quasi-static conditions only exhibit positive sensitivity. In addition, the activation volume of the ASP 60 test samples increases with temperature but decreases with true strain in both quasi-static and dynamic deformation regimes. The plastic flow resistance of ASP 60 specimens shows varying sensitivity across different temperature ranges. The deformation in the specimens with positive strain rate sensitivity is described using the Zerilli-Armstrong HCP constitutive model.
The fractographic analysis reveals a dependence of brittle and ductile failure modes on the applied conditions, as well as the distinct mechanisms contributing to negative strain rate sensitivity. Specifically, brittle fracture is the predominant mechanism at a temperature of -195 °C under cryogenic conditions, while localized melting occurs at an elevated temperature of 800 °C. Both phenomena contribute to the observed negative strain rate sensitivity. In addition, the transmission electron microscopy analysis shows that tangled dislocation substructures are present in the deformed ASP 60 specimens. The secondary carbide precipitates are also observed in the material. These features contribute to an increase in plastic flow resistance. Moreover, flow stress and dislocation density exhibit a linear correlation. Flow stress rises in accordance with the square root of dislocation density across all test temperatures. Overall, a comprehensive understanding of the performance and the related microstructure development of powder metallurgical high-speed steel ASP 60 has been established.
[1] G. Hoyle, High Speed Steel, Butterworth, England, p. 5, 1988.
[2] ASSAB Group, ASSAB ASP 60 Datasheet, URL: http://cdna.terasrenki.com/ds/1.3241_1.3292_HS6-7-6-10_SS-2727_Vanadis_60_ASP-60_Datasheet_1.pdf, (accessed 2020-05-25).
[3] S. H. Chang, C. L. Huang, K. T. Huang, and C. M. Liu, Improvement of the Wear and Corrosion Behaviors of DLC/oxynitriding Duplex-treated PM60 High-speed Steel via Various Power Densities of DC-pulsed Plasma Enhanced CVD, ISIJ International, Vol. 56, No. 12, pp. 2276-2283, 2016.
[4] M. A. Meyers, Dynamic Behaviour of Materials, John Wiley & Sons Inc, New York, 1994.
[5] B. Dodd and Y. Bai, Adiabatic Shear Localization, Elsevier, London & Waltham, 2012.
[6] H.-O. Andrén, Atom-probe microanalysis of a tempered high-speed steel, Scripta METALLURGICA, Vol. 15, pp. 749-752, 1981.
[7] K. Stiller, L-E. Svensson, P. R. Howell, W. Rong, H-O. Andrén and G. L. Dunlop, High resolution microanalytical study of precipitation in a powder metallurgical high speed steel, Acta Metallurgica, Vol. 32, pp. 1457-1467, 1984.
[8] R. M. German, Powder Metallurgy Science, Metal Powder Industries Federation, New Jersey, 1994.
[9] F. Thümmler and R. Oberacker, Introduction to Powder Metallrugy, The institute of Materials, London, 1993.
[10] H. V. Atkinson and B. A. Rickinson, Hot Isostatic Processing, Adam Hilger, New York, 1991.
[11] Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, Vol. 11, Issue 2, pp.127-140, 1963.
[12] B. Wu, X. X. Wang, H. N. Sui, Q. Bao, A. M. He, H. Q. Sun, Q. Wu and P. Wang, Shock compression of porous copper containing helium: Molecular dynamics simulations and theoretical model, International Journal of Plasticity, Vol. 174, 103899, 2024.
[13] Y. Liu, T. Wang, H. Chen, Z. Li, S. Li, D. Wang, Y. Wang and K. Kosiba, Impact behaviors of additively manufactured metals and structures: A review, International Journal of Impact Engineering, Vol. 191, 104992, 2024.
[14] B. Budiansky, Thermal and Thermoelastic Properties of Isotropic Composites, Journal of Composite Materials, Vol. 4, Issue 3, pp. 286-295, 1970.
[15] H. N. Han, Y. G. Lee, K. H. Oh and D. N. Lee, Analysis of hot forging of porous metals, Materials Science and Engineering: A, Vol. 206, Issue 1, pp. 81-89, 1996.
[16] W. Rong, H. O. Andrén, H. Wisell and G. L. Donlup, The role of alloy composition in the precipitation behaviour of high speed steel, Acta Metallurgica et Materialia, Vol. 40, pp. 1727-1738, 1992.
[17] S. Söderberg and S. Hogmark, Wear mechanisms and tool life of high speed steels related to microstructure, Wear, Vol. 110, pp. 315 - 329, 1986.
[18] M. A. Gomes, A. S. Wronski and C. S. Wright, Fractue behaviour of a highly alloy high speed steel, Fatigue & Fracture of Engineering Materials & Structures, Vol. 18, pp. 1-18, 1995.
[19] P. L. Tso and C. C. Lu, Study on the grinding of P/M high speed steel ASP 60, International Journal of Machine Tools and Manufacture, Vol. 39, pp. 627–638, 1999.
[20] P. L. Studt, E. Nidick, F. Uribe, A. K. Mukherjee and C. H. Karnes, Metallurgical Effects at High Strain Rates - Effects of Microstructure and Temperature on Dynamic Deformation of Single Crystal Zinc, Plenum Press, New York-London, pp. 379-398, 1973.
[21] J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Vol. 21, Issue 169, pp. 63–82, 1970.
[22] H. Conrad, The athermal component of the flow stress in crystalline solids, Materials Science and Engineering, Vol. 6, pp. 265-273, 1970.
[23] H. Conrad, Thermally activated deformation of metals, The Journal of The Minerals, Vol. 16, pp. 582–588, 1964.
[24] U. S. Lindholm, Techniques in Metals Research, Interscience, Vol. 1, 1971.
[25] B. A. Gama, S. L. Lopatnikov and J. W. Gillespie Jr., Hopkinson bar experimental technique: A critical review, Applied Mechanics Reviews, Vol. 57, No. 4, pp. 223-250, 2004.
[26] S. Nemat-Nasser, Introduction to high strain rate testing, ASM Handbook Vol. 8 (Mechanical Testing and Evaluation), pp. 427–428, 2000.
[27] ASM Int., ASM Handbook Vol. 8 (Mechanical Testing and Evaluation), pp. 462–476, 2000.
[28] G. T. Gray III, Classic split-Hopkinson pressure bar testing, ASM Handbook Vol. 8 (Mechanical Testing and Evaluation), pp. 462–476, 2000.
[29] J. M. Lifshitz and H. Leber, Data processing in the split Hopkinson pressure bar tests, International Journal of Impact Engineering, Vol. 15, No. 6, pp. 723–733, 1994.
[30] C. J. Gong, L. E. Malvern, and D. A. Jenkins, Dispersion investigation in the split Hopkinson pressure bar, Journal of Engineering Materials and Technology, Vol. 112, pp. 309–314, 1990.
[31] W. S. Lee, C. Y. Liu and P. K. Wang, Correction of Wave Dispersion Effect in Split-Hopkinson Pressure Bar System Using Discrete Fourier Transformation, Journal of the Chinese Society of Mechanical Engineers, Vol. 29, No.5, pp. 389-396, 2008.
[32] ASTM International, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM E9-19, 2019.
[33] ASTM International, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, ASTM E209-18, 2018.
[34] P. Ludwik, Elemente der Technologischen Mechanik, Springer Berlin, Heidelberg, 1909.
[35] G. R. Johnson and W. H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures, Proceedings 7th International Symposium on Ballistics, pp. 541-547, 1983.
[36] R.W. Klopp, R. J. Clifton and T. G. Shawki, Pressure-shear impact and the dynamic viscoplastic response of metals, Mechanics of Materials, Vol. 4, Issues 3–4, pp. 375-385, 1985.
[37] A. S. Khan and S. Huang, Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104s−1, International Journal of Plasticity, Vol. 8, Issue 4, pp. 397-424, 1992.
[38] H. Yu, Y. Guo, K. Zhang and X. Lai, Constitutive model on the description of plastic behavior of DP600 steel at strain rate from 10−4 to 103 s−1, Computational Materials Science, Vol. 46, Issue 1, pp. 36-41, 2009.
[39] A. S. Khan and R. Liang, Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling, International Journal of Plasticity, Vol. 15, Issue 10, pp. 1089-1109, 1999.
[40] F. Kabirian, A. S. Khan and A. Pandey, Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling, International Journal of Plasticity, Vol. 55, pp. 232-246, 2014.
[41] P.S. Follansbee and U.F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metallurgica, Vol. 36, Issue 1, pp. 81-93, 1988.
[42] U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology, Vol. 98, No. 1, pp. 76-85, 1976.
[43] F. J. Zerilli and R. W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, Vol. 61, Issue 5, pp. 1816–1825, 1987.
[44] G. R. Johnson and T. J. Holmquist, Evaluation of cylinder‐impact test data for constitutive model constants, Journal of Applied Physics, Vol. 64, Issue 8, pp. 3901–3910, 1988.
[45] F. J. Zerilli and R. W. Armstrong, Constitutive equation for HCP metals and high strength alloy steels, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, Vol. 48, pp.121–126, 1995.
[46] A. Rusinek and J. R. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, International Journal of Plasticity, Vol. 17, Issue 1, pp. 87-115, 2001.
[47] A. Rusinek and J. A. Rodríguez-Martínez, Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects, Materials & Design, Vol. 30, Issue 10, pp. 4377-4390, 2009.
[48] R. K. Ham, The determination of dislocation densities in thin films, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Series 8, Vol. 6, Issue 69, pp. 1183-1184, 1961.
[49] Metal Powder Industries Federation, Determination of Density of Compacted or Sintered Powder Metallurgy (PM) Products, MPIF Standard 42, 2022.
[50] Metal Powder Industries Federation, Guide for the Determination of the Porosity in Powder Metallurgy (PM) Products Using Automated Image Analysis, MPIF Standard 69, 2022.
[51] 黃坤祥, 粉末冶金學, 粉體及粉末冶金協會, 新竹縣, 2004.
[52] W. S. Lee, C. Y. Liu and T. N. Sun, Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures, International Journal of Impact Engineering, Vol. 32, pp. 210–223, 2005.
[53] W. S. Lee, C. F. Lin, T. H. Chen and M. C Yang, High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate, Materials Science and Engineering A, Vol. 527, pp. 3127–3137, 2010.
[54] W. S. Lee, C. F. Lin, T. H. Chen and W. Z. Luo, High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading, Journal of Nuclear Materials, Vol. 420 pp. 226–234, 2012.
[55] R. W. Rohde, B. M. Butcher, J. R. Holland and C. H. Karnes, Metallurgical Effects at High Strain Rates, Plenum Press, New York-London, 1973.
[56] C. P. Huang, M. Wang, K. Y. Zhu, A. Perlade and M. X. Huang, Carbon-induced negative strain-rate sensitivity in a quenching and partitioning steel, Acta Materialia, Vol. 255, 119099, 2023.
[57] W. S. Lee, T. H. Chen, C. F. Lin and M. S. Chen, Impact deformation behaviour and dislocation substructure of Al–Sc alloy, Journal of Alloys and Compounds, Vol. 493, pp. 580–589, 2010.
[58] W. D. Callister Jr. and D. G. Rethwisch , Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons Inc., New York, pp. 326-329, 2016.
[59] L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, UK, 1990.
[60] B. K. Wang, A study in the Impact Deformaion and Fracture Behaviour of Fe-Mn-Al Alloy, Master's thesis, National Cheng Kung University, 2004.
[61] K. Harikrishna, A. Bhowmik, M. J. Davidson, R. Kumar, A. E. Anqi, A. A. Rajhi, S. Alamri and R. Kumar, Evaluation of constitutive equations for modeling and characterization of microstructure during hot deformation of sintered Al–Zn–Mg alloy, Journal of Materials Research and Technology, Vol. 28, pp. 1523-1537, 2024.
[62] Y.C. Lin and X. M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials & Design, Vol. 32, Issue 4, pp. 1733-1759, 2011.
[63] X. D. Jia,K. Hao, Z. Luo and Z. Fan, Plastic Deformation Behavior of Metal Materials: A Review of Constitutive Models, Metals, Vol. 12, Issue 12, 2077, 2022.
校內:2030-07-09公開