簡易檢索 / 詳目顯示

研究生: 朱偉正
Chu, Wei-Cheng
論文名稱: 釩固氮酵素的模型化合物
Model Compounds for Vanadium Nitrogenase
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 固氮酵素固氮菌鉬-固氮酵素釩-固氮酵素鐵蛋白質鉬-鐵蛋白質金屬蛋白質鐵-鉬輔酶鐵-釩輔酶
外文關鍵詞: nitrogenase, molybdenum nitrogenase, vanadium nitrogenase, Fe-protein, Mo-Fe protein, Fe-Mo cofactor, Fe-V cofactor
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這份研究中,一系列不同配位數(5、6和7配位)包含PS3配位基(PS3= tris(2-thiophenyl)phosphine的三價陰離子與苯環上不同取代基的衍生物)的釩三價化合物被製備與結構鑑定。這些錯合物的通式為[V(PS3)Ln]0,-,當n=1( L = Cl-、 1-Me-Im、N3-),n=2(L =2,2’-bpy,該配位基為雙芽基)和n=3 ( L = 1-Me-Im, N2H4)。我們也研究了化合的直流(DC)磁化率和高頻率高磁場電子順磁共振的研究。除此之外,我們發現在常溫常壓下[V(PS3”)Cl]-(1)可以在分別以CoCp2(或Na/Hg)和2,6-LutHCl作為電子和質子來源的情況下催化聯胺(N2H4)產生氨氣(NH3)(Eq1)。再者,[V(PS3”)Cl]-在CH3CN溶劑中也可以分別以 [LutH][BAr’4] (LutH = 2,6-lutidinium and Ar’ = 3,5-(CF3)2C6H3))和 CoCp*2作為質子與電子來源的情況下催化二亞胺(N2H2)產生氨氣(NH3)(Eq2),在最佳條件下可催化8-9當量的二亞胺(N2H2)。以[V(PS3”)Cl]-催化還原聯胺(N2H4)和二亞胺(N2H2)產生氨氣(NH3)的化學性質與可能的反應機構將詳細的被描述。

    N2H4 + 2e- + 2H+ → 2NH3 (Eq1)
    N2H2 + 4e- + 4H+ → 2NH3 (Eq2)

    At this work, a series of V(III) complexes of varying coordination number (5, 6, and 7) all containing the PS3 ligand (PS3 = trianion of tris(2-thiophenyl)phosphine and its derivatives with other phenyl substituents) has been prepared and structurally characterized. The complexes have general formula [V(PS3)Ln]0,-, where n =1 (from L = Cl-, 1-Me-Im,N3-), 2 (from L =2,2’-bpy; counting each N of the bidentate ligand), and 3 (from L = 1-Me-Im, N2H4). The complexes have also been
    investigated by direct current (DC) magnetic susceptibility and high-frequency and -field electron paramagnetic resonance(HFEPR).
    Besides, we observed that [V(PS3”)Cl]-(1)can catalyze the reduction of hydrazine to ammoniain at ambient temperature and pressure in the presence of CoCP2 (or Na/Hg) and [2,6-LutH]Cl (where LutH = 2,6-lutidinium) as external electron and proton sources, respectively (shown in Eq1). Furthermore, [V(PS3”)Cl]- also can catalyze reduction of diazene to ammoniain in CH3CN with the presence of [2,6-LutH][BAr’4] (where LutH = 2,6-lutidinium and Ar’ = 3,5-(CF3)2C6H3)) and CoCp*2 (CoCp*2 = decamethyl cobaltocene) as external proton and electron sources, respectively, to give the optimal turnover number (approximate 8-9) (shown in Eq2). The detail chemistry as well as possible pathways for the reduction of N2H4 and N2H2 by [V(PS3”)Cl]- will be described.

    N2H4 + 2e- + 2H+ → 2NH3 (Eq1)
    N2H2 + 4e- + 4H+ → 2NH3 (Eq2)

    摘要……………………………………………………………………………I 英文摘要 ……………………………………………………………………II 誌謝…………………………………………………………………………III 目錄…………………………………………………………………………IV 表目錄……………………………………………………………………X 圖目錄……………………………………………………………………XII 縮寫(Abbreviation)………………………………………………………XVI 第一章 前言…………………………………………………………………1 1-1 前言………………………………………………………………………2 1-2 固氮酵素 (Nitrogenase)…………………………………………………4 1-2.1 鉬-固氮酵素結構 …………………………………………………6 1-2.2 釩-固氮酵素(vanadium nitrogenase)和鐵-固氮酵素 (iron-only nitrogenase)結構探討 …………………………………9 1-3 鉬-固氮酵素催化還原機制 …………………………………………11 1-3.1 電子的轉移(Electron transfer) …………………………………11 1-3.2氮氣的鍵結與還原路徑 (reduction pathways)……………………13 1-3.2.1理論計算研究…………………………………………………13 1-3.3.2電子順磁共振 (Electron Paramagnetic Resonance, EPR) 和電子-核雙共振 (Electron-Nuclear Double Resonance, ENDOR) 的光譜研究……………………………15 1-4 固氮酵素的生物模擬化合物(Biomimetic compound )………………17 1-4.1 鉬金屬的生物模擬化合物 ………………………………………17 1-4.2 鐵金屬的生物模擬化合物 ………………………………………20 1-4.3 釩金屬的生物模擬化合物 ………………………………………22 1-5 研究動機與目標 ………………………………………………………24 第二章 實驗方法與合成 …………………………………………………26 2-1 實驗條件 ………………………………………………………………27 2-1.1 一般實驗條件 ……………………………………………………27 2-1.1.1溶劑的準備……………………………………………………27 2-2 使用的儀器與樣品準備方法 …………………………………………28 2-2.1 IR吸收光譜(Infrared Spectroscopy, IR) ……………………28 2-2.2 X-ray單晶繞射(X-ray Single Crystal Diffractometer)…………28 2-2.3 超導量子干涉磁化儀(Superconducting Quantum Interference Device Magnetometer, SQUID) ……………………29 2-2.4紫外光可見光近紅外光光譜(Ultraviolet/Visible/ Near-Infrared Spectroscopy, UV/Vis/NIR)………………………30 2-2.5 循環伏安法(Cyclic Voltammery, CV)……………………………31 2-2.6 元素分析(Elemental Analysis,EA)………………………………31 2-2.7高頻率高磁場電子順磁共振光譜(High-Frequency and -Field Electron Paramagnetic Resonance Spectroscopy, HFEPR)………31 2-3 化合物的合成…………………………………………………………32 2-3.1合成化合物 [Ph4P][V(PS3”)Cl] (1)……………………………32 2-3.2 合成化合物 [Ph4P][V(PS3’)Cl]•THF (2)………………………33 2-3.3 合成化合物 [V(PS3)1-Me-Im]‧CH3OH(3‧CH3OH) …………33 2-3.4 合成化合物 [V(PS3')(1-Me-Im)] (4) ……………………………34 2-3.5 合成化合物[N(C3H7)4][V(PS3)N3] (5) 和化合物[V(PS3′)(2,2′-bpy)]‧2CH3OH (6‧2CH3OH) …………………35 2-3.6 合成化合物[V(PS3)(1-Me-Im)3] (7)……………………………35 2-3.7 合成化合物 [V(PS3”)(N2H4)3]‧3THF(8‧3THF)……………36 2-3.8 合成[Na][3,5-(CF3)2C6H3]4B](NaBAr'4)………………………37 2-3.9 合成化合物 [LutH][BAr’4]………………………………………37 2-3.10 合成Potassium azodiformate……………………………………39 2-3.11 鈉汞齊(Na/Hg)的合成……………………………………………40 2-4 催化反應的研究……………………………………………………40 2-4.1 Indophenol 方法 ………………………………………………40 2-4.2 催化還原N2H4產生NH3的反應研究…………………………41 2-4.2.1 催化時間曲線的的研究(Time-Course studies)…………41 2-4.2.2 沒有催化劑下,N2H4分解產生NH3反應的研究 ………42 2-4.2.3 N2H4自身分解反應產生NH3的研究 ……………………43 2-4.2.4 催化還原不同當量數的N2H4生成NH3的研究…………43 2-4.3 催化還原N2H2產生NH3的反應研究……………………………44 2-4.3.1 催化時間曲線的研究(Time-Course studies)………………44 2-4.3.2 沒有催化劑下,N2H2分解產生NH3反應的研究……………44 2-4.3.3 N2H2自身分解反應產生NH3的研究…………………………45 2-4.3.4 催化還原N2H4產生NH3的研究 ……………………………45 2-4.3.5催化還原不同當量數的N2H2生成NH3的研究………………46 第三章 結果與討論………………………………………………………47 3-1 結構與光譜探討 ………………………………………………………48 3-1.1 化合物[PPh4][V(PS3”)Cl] (1)的結構探討……………………48 3-1.2化合物[PPh4][V(PS3’)Cl]‧THF(2)的結構探討………………50 3-1.3 化合物[V(PS3)(1-Me-Im)](3)的探討……………………………52 3-1.4 化合物 [V(PS3’)(1-Me-Im)] (4)的探討 …………………………54 3-1.5 化合物 [V(PS3)(1-Me-Im)3](7)的探討 …………………………56 3-1.6 化合物 [V(PS3”)( N2H4)3](8)的探討 ……………………………58 3-2超導量子干涉磁化率(Superconducting Quantum Interference Device Magnetc susceptibility, SQUID)的研究 …………………62 3-3高頻率高磁場電子順磁共振光譜(High-Frequency and -Field Electron Paramagnetic Resonance Spectroscopy, HFEPR)的研究……64 3-4催化還原N2H4生成NH3的實驗結果與討論…………………………66 3-4.1企圖將[V(PS3″)(N2H4)3] (8) 進行自身分解生成NH3 …………66 3-4.2企圖以[PPh4][V(PS3”)Cl] (1)在THF為溶劑下, 催化還原N2H4結果與探討…………………………………………68 3-4.3以[PPh4][V(PS3”)Cl] (1)在CH3CN為溶劑下, 催化還原N2H4結果與探討…………………………………………68 3-4.4不同時間下催化還原N2H4結果與探討 …………………………68 3-4.5 不同當量數N2H4催化還原的結果與探討 ………………………69 3-4.6將還原劑Co(Cp)2改變為Na/Hg進行催化N2H4的探討…………76 3-5催化還原Diazene(N2H2)生成NH3的結果與探討 ……………………79 3-5.1 以化合物1為催化劑催化還原N2Ph2的結果與探討……………79 3-5.2 以化合物1為催化劑催化還原N2H2的結果與探討……………80 3-5.3 以[LutH][BAr’4]為質子來源和CoCp*2為還原劑催化 還原N2H2的結果與探討…………………………………………83 第四章 結論 ………………………………………………………………92 參考文獻……………………………………………………………………98 附錄 ………………………………………………………………………103

    1. Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965.
    2. Alberty, R. A. J. Biol. Chem. 1994, 269, 7099.
    3. Eady, R. R. Chem. Rev. 1996, 96, 3013.
    4. Georgiadis, M. M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J. J.; Rees, D. C. Science 1992, 257, 1653.
    5. Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.
    6. Ochiai, E. In Bioinorganic Chemistry: A Survey; Elsevier: London, 2008, p 205.
    7. Hinnemann, B.; Norskov, J. K. J. Am. Chem. Soc. 2003, 125, 1466.
    8. Lukoyanov, D.; Pelmenschikov, V.; Maeser, N.; Laryukhin, M.; Yang, T. C.; Noodleman, L.; Dean, D. R.; Case, D. A.; Seefeldt, L. C.; Hoffman, B. M. Inorg. Chem. 2007, 46, 11437.
    9. Lee, H. I.; Benton, P. M. C.; Laryukhin, M.; Igarashi, R. Y.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem.Soc. 2003, 125, 5604.
    10. Yang, T.-C.; Maeser, N. K.; Laryukhin, M.; Lee, H.-I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem Soc. 2005, 127, 12804.
    11. Eady, R. R. Coord. Chem. Rev. 2003, 237, 23.
    12. Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.
    13. Rehder, D. In Bioinorganic Vanadium Chemistry; John Wiely & Sons Ltd.: London, 2008, p 135.
    14. Zhong, S.-J.; Liu, C.-W. Polyhedron 1997, 16, 653.
    15. Schimpl, J.; Petrilli, H. M.; Blochl, P. E. J. Am. Chem. Soc.2003, 125, 15772.
    16. Dance, I. J. Am. Chem. Soc. 2007, 129, 1076.
    17. Kastner, J.; Blochl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
    18. Dance, I. Dalton Trans. 2008, 5977.
    19. Szilagyi, R. K.; Musaev, D. G.; Morokuma, K. Inorg. Chem. 2001, 40, 766.
    20. Gronberg, K. L. C.; Gormal, C. A.; Durrant, M. C.; Smith, B. E.; Henderson, R. A. J. Am. Chem. Soc. 1998, 120, 10613.
    21. Durrant, M. C. Biochemistry 2002, 41, 13946.
    22. Durrant, M. C. Biochemistry 2002, 41, 13934.
    23. Barriere, F.; Pickett, C. J.; Talarmin, J. Polyhedron 2001, 20, 27.
    24. Barney, B. M.; Laryukhin, M.; Igarashi, R. Y.; Lee, H.-I.; Dos Santos, P. C.; Yang, T.-C.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Biochemistry 2005, 44, 8030.
    25. Barney, B. M.; Lukoyanov, D.; Yang, T.-C.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17113.
    26. Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem.Res. 2009, 42, 609.
    27. Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
    28. Schrock, R. R. Acc. Chem. Res. 2005, 38, 955.
    29. Schrock, R. R. Angew. Chem. Int. Ed. 2008, 47, 5512.
    30. Studt, F.; Tuczek, F. Angew. Chem. Int. Ed. 2005, 44, 5639.
    31. Leigh, G. J. Science 2003, 301, 55.
    32. Yandulov, D. V.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6252.
    33. Yandulov, D. V.; Schrock, R. R.; Rheingold, A. L.; Ceccarelli, C.; Davis, W. M. Inorg. Chem. 2003, 42, 796.
    34. Coucouvanis, D.; Kanatzidis, M. G. J. Am. Chem. Soc.1985, 107, 5005.
    35. Coucouvanis, D.; Salifoglou, A.; Kanatzidis, M. G.; Dunham, W. R.; Simopoulos, A.; Kostikas, A. Inorg.Chem. 1988, 27, 4066.
    36. Coucouvanis, D.; Challen, P. R.; Koo, S. M.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181.
    37. Coucouvanis, D.; Draganjac, M. E.; Koo, S. M.; Toupadakis, A.; Hadjikyriacou, A. I. Inorg. Chem. 1992, 31, 1186.
    38. Coucouvanis, D.; Al-Ahmad, S. A.; Salifoglou, A.; Papaefthymiou, V.; Kostikas, A.; Simopoulos, A. J. Am.Chem. Soc. 1992, 114, 2472.
    39. Kim, C. G.; Coucouvanis, D. Inorg. Chem. 1993, 32, 1881.
    40. Kim, C. G.; Coucouvanis, D. Inorg. Chem. 1993, 32, 2232.
    41. Coucouvanis, D.; Mosier, P. E.; Demadis, K. D.; Patton, S.; Malinak, S. M.; Kim, C. G.; Tyson, M. A. J. Am. Chem.Soc. 1993, 115, 12193.
    42. Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1994, 33, 4195.
    43. Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1995, 34, 3658.
    44. Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1995, 34, 436.
    45. Demadis, K. D.; Malinak, S. M.; Coucouvanis, D. Inorg. Chem. 1996, 35, 4038.
    46. Tyson, M. A.; Coucouvanis, D. Inorg. Chem. 1997, 36, 3808.
    47. Laughlin, L. J.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3118.
    48. Malinak, S. M.; Simeonov, A. M.; Mosier, P. E.; McKenna, C. E.; Coucouvanis, D. J. Am. Chem. Soc.1997, 119, 1662.
    49. Holland, P. L. Acc. Chem. Res. 2008, 41, 905-914.
    50. Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222.
    51. Smith, J. M.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2003, 125, 15752.
    52. Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 10782.
    53. Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
    54. Sellmann, D.; Hennige, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 276.
    55. Smythe, N. C.; Schrock, R. R.; Muller, P.; Weare, W. W. Inorg. Chem. 2006, 45, 9197.
    56. Ferguson, R.; Solari, E.; Floriani, C.; Osella, D.; Ravera, M.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1997, 119, 10104 .
    57. Davies, S. C.; Hughes, D. L.; Janes, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sanders, J. R.; Silverstone, J. E.; Sobota, P. Inorg. Chem. 2000, 39, 3485 .
    58. Shengfa Ye, Frank Neese, Andrew Ozarowski, Dmitry Smirnov, J. Krzystek, Joshua Telser, Liao, Ju-Hsiou, Hung, Chen-Hsiung, Chu, Wei-Chen, Tsai, Yi-Feng, Wang, Rong-Chin, Chen, Kun-Yuan, and Hsu, Hua-Fen, Inorg. Chem. 2010, 49, 977
    59. Chu, Wei-Cheng, Wu, Chi-Chin, and Hsu, Hua-Fen, Inorg. Chem. 2006, 45, 3164
    60. Hsu, Hua-Fen, Chu, Wei-Cheng, Hung, Chen-Hsiung, and Liao, Ju-Hsiou, Inorg. Chem. 2003, 42, 7369
    61.王榮慶, 國立成功大學化學系研究所碩士論文, 2006年.
    62.陳崑源, 國立成功大學化學系研究所碩士論文, 2006年.
    63. Yandulov, D. V.; Schrock, R. R. J. Am. Chem. Soc. 2002, 2002, 252.
    64. Reger, D. L.; Wright, T. D.; Little, C. A.; Lamba, J. J. S.; Smith, M. D. Inorg Chem 2001, 40, 3810.
    65. Liao, G. L.; Palmer, G. Biochemistry 1998, 37, 15583.
    66.Barney, B. M.; McClead, J.; Lukoyanov, D.; Laryukhin, M.; Yang, T. C.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. Biochemistry 2007, 46, 6784.
    67. Chaney, A. L.; Marbach, E. P. Clin. Chem. (Winston-Salem, N. C.) 1962, 8, 130.

    無法下載圖示 校內:2015-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE