| 研究生: |
姚敦瀚 Yao, Tun-han |
|---|---|
| 論文名稱: |
粒子尋優法效能改進及其在旅行商問題之應用 Improved Particle Swarm Optimization and Its Application to Travelling Salesman Problem |
| 指導教授: |
陳介力
Chen, Chieh-li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 粒子尋優法 、旅行商問題 、模糊C-Means分群法 |
| 外文關鍵詞: | Fuzzy C-Means clustering, Travelling Salesman Problem, Particle Swarm Optimization |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要提出改進式粒子尋優法模擬銷售員送貨路徑最佳化問題,整個演算流程分為兩個階段,第一階段為前置處理作業,包含新式的路徑排序方法、隨機交換策略以及基於模糊C-Means分群法的分群機制;新式的排序方法為以角度為參考的路徑排序法,此法改善了傳統旅行商問題會面臨的交叉現象,而基於模糊C-Means分群法的粒子尋優法應用於旅行商問題為一個新的概念,主要的貢獻在於當城市數量龐大時,降低各群聚的運算量,藉以取得更好的結果;第二階段為粒子尋優法,其中包含突變及交配策略,其概念來自於遺傳算則,將其概念結合在粒子尋優法搜尋策略中,藉以提升粒子尋優法的尋解效能。
本文中,粒子尋優法解旅行商問題的方法為空間轉換法(Space transformation),其主要原理是將所有城市以浮點數來表示其順序,其中浮點數所組合成的向量稱為空間向量(Space vector),粒子尋優法的數值運算皆架構在空間向量上,而空間向量透過映射(Mapping)的技術便能夠轉變為城市的排序(Tour),用向量來描述路徑的方法,能夠大大節省運算量,在最佳化領域中,節省電腦運算量是提升效能的主要方法之一。
對於演算法的效能分析,本文利用固定運算時間的方式比較不同方法效率的優劣,而本文也著重於分群效率的比較,並證明分群法在解高城市數問題時能夠取得較優異的結果。
This dissertation proposed a improved version of Particle Swarm Optimization (PSO) to solve Traveling Salesman Problem (TSP). This evolutionary algorithm includes two phases. First phase includes Fuzzy C-Means clustering, a rule-based route permutation, a randomly swap strategy and a cluster merge procedure. This approach generates an initial route without cross link problem, which make TSB problem can be solved more efficiently by the proposed PSO algorithm. The use of sub-cluster to solve TSP is also a novel procedure in the literature, which reduces the complexity and obtains better performance for problems with a large number of cities. The second phase is the use of the improved PSO procedure, a Genetic Algorithm hybrid strategy, which solves the TSP with better performance.
In this study, the space transformation is applied for route tour in which space vector transfers into tour through mapping function. This method could decrease the complexity and raise the evolutionary efficiency. Fixed runtime was applied to compare the efficiency of novel algorithm with other algorithms. This research also focuses on the comparison of clustering efficiency, and the result reveals that the clustering method reaches a better result for the cases with a large number of cities.
Bandura, A., 1977, Social Learning Theory. Englewood Cliffs, N.J., Prentice-Hall, 22.
Bello, R., Gomez, Y., Nowe, A., Garcia, M. M., 2007, Two-Step Particle Swarm Optimization to Solve the Feature Selection Problem, Proceedings of International Conference on Intelligent Systems Design and Applications, 691-696.
Bezdek, J. C., 1973, Fuzzy Mathematics in Pattern Classification, Cornell University.
Chandrasekaran, S., Ponnambalam, S. G., Suresh, R. K., and Vijayakumar, N., 2006, A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems, Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 1-6.
Chatterjee, A., Pulasinghe, K., Watanabe, K., Izumi, K., 2005, A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems, IEEE Transactions on Industrial Electronics, 52, 6, 1478-1489.
Chen, J, F., Ren, Z. W., and Fan, X. N., 2006, Particle swarm optimization with adaptive mutation and its application research in tuning of PID parameters, Proceedings of 1st International Symposium on Systems and Control in Aerospace and Astronautics, 1-5.
Chen, G. M., Min, Z. F., Jia J. Y., and Huang, X. B., 2006, Self-Active Inertia Weight Strategy in Particle Swarm Optimization Algorithm, Proceedings of the 6th World Congress on Intelligent Control and Automation, 1, 3686-3689.
Chen, X., Li, Y. M., 2006, Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization, Proceedings of the International Conference on Mechatronics and Automation,1722-1727.
Croes, G. A., 1958, A Method for Solving Traveling-Salesman Problems, Transactions on Operations Research, 791-182.
Dunn, J. C., 1973, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, 3, 32-57.
Gao, S., Jiang, X. Z., Tang, K. Z., and Yang, J. Y., 2006, Hybrid Algorithm Combining Ant Colony Optimization Algorithm with Particle Swarm Optimization, Chinese Control Conference, 1428-1432.
Herrnstein, R. J., 1970, On the law of effect. Journal of the Experimental Analysis of Behavior, 13, 243-266.
Hsiao, Y. T., Chuang, C. L., Jiang, J. A., 2005, A hybrid of ε-constraint and particle swarm optimization for designing of PID controllers, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 4(10-12), 3063-3070.
Ho, S. Y., Lin, H. S., Liauh, W. H. ,and Ho, S. J., 2006, OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems, IEEE Transactions on Systems, Man, and Cybernetics, 1-21.
Jang, J. S., Data clustering and Pattern Recognition, http://neural.cs.nthu.edu.tw/jang/books/dcpr/, CS Dept., Tsing Hua University, Taiwan.
Kennedy, J., and Eberhart, R.,1995, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, 1942-1948.
Krusienski, D. J., and Jenkins, W. K., 2004, Particle swarm optimization for adaptive IIR filter structures, Proceedings of Congress on Evolutionary Computation, 1, 965-970.
Liu, Z. X., and Wang, S. M., 2006, Hybrid Particle Swarm Optimization for Permutation Flow Shop Scheduling, Proceedings of the 6th World Congress on Intelligent Control and Automation, 1, 3245-3249.
Ma, F., and Chen, X. B., 2006, Application of Varying Population Size Particle Swarm Optimization Algorithm to AGC of Power Systems, Proceedings of the 6th World Congress on Intelligent Control and Automation, 1, 3310-3314.
Millonas, M.M., 1994, Swarms, Phase Transitions, and Collective Intelligence, in Artificial Life 111, SFI Studies in the Sciences of Complexity, 17.
Pang, W., Wang, K. P., Zhou, C. G., and Dong, L. J., 2004, Fuzzy Discrete Particle Swarm Optimization for Solving Traveling Salesman Problem, Proceedings of the 4th International Conference on Computer and Information Technology, 796-800.
Pang, W., Wang, K. P., Zhou, C. G., Dong, L. J., Liu, M., Zhang, H. Y., and Wang, J. Y., 2004, Modified particle swarm optimization based on space transformation for solving traveling salesman problem, Proceedings of International Conference on Machine Learning and Cybernetics, 4, 2342-2346.
Pugh, J., Martinoli, A., and Zhang, Y., 2005, Particle swarm optimization for unsupervised robotic learning, Proceedings of IEEE of Swarm Intelligence Symposium, 92-99.
Seo, J. H., Im, C. H., Heo, C. G., Kim, J. K., Jung, H. K., and Lee, C. G., 2006, Multimodal function optimization based on particle swarm optimization, IEEE Transactions on Magnetics, (4)42, 1095-1098.
Shen, X. J., Li, Y. X., Wang, W. W., and Zheng, B. J., 2006, A Dynamic Adaptive Particle Swarm Optimization for Knapsack Problem, Proceedings of the 6th World Congress on Intelligent Control and Automation, 1, 3183-3187.
Shoorehdeli, M. A., Teshnehlab, M., Moghaddam, H. A., 2006, Feature Subset Selection for Face Detection Using Genetic Algorithms and Particle Swarm Optimization, Proceedings of International Conference on Networking, Sensing and Control, 686-690
Thorndike, E. L., 1898, Animal intelligence: An experimental study of the associative processes in animals, Psychological Review Mdddh Supplement, 2, 1-109.
TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95, Institute of information, University Heidelberg.
Wang, K. P., Huang, L., Zhou, C. G., Pang, W., 2003, Particle swarm optimization for traveling salesman problem, Proceedings of International Conference on Machine Learning and Cybernetics, 3, 1583-1585.
Wang, X. H., and Li, J. J., 2004, Hybrid particle swarm optimization with simulated annealing, Proceedings of International Conference on Machine Learning and Cybernetics, 4, 2402-2405.
Wang, C. R., Zhang, J. W., Yang, J., Hu, C. J., Liu, J., 2005, A Modified Particle Swarm Optimization Algorithm and its Application For Solving Traveling Salesman Problem, Proceedings of International Conference on Neural Networks and Brain, 2, 689-694.
Wu, B., Wang, W. L., Zhao, Y. W., Xu, X. L., and Yang, 2006, F. Y., ,A Novel Real Number Encoding Method of Particle Swarm Optimization for Vehicle Routing Problem, Proceedings of the 6th World Congress on Intelligent Control and Automation, 1, 3271-3275.
Zhi, X. H., Xing, X. L., Wang, Q. X., Zhang, L. H., Yang, X. W., Zhou, C. G.,and Liang, Y. C., 2004, A discrete PSO method for generalized TSP problem, Proceedings of International Conference on Machine Learning and Cybernetics, 4, 2378-2383.
Zhang, X. H., Meng, H. Y., and Jiao, L. C., 2005, Intelligent particle swarm optimization in multiobjective optimization, Proceedings of the Congress on Evolutionary Computation, 1, 714-719.