| 研究生: |
張富全 Chang, Fu-Chuan |
|---|---|
| 論文名稱: |
醣皮質類固醇在高脂飲食誘發脂肪肝所扮演的角色 Role of glucocorticoids in high-fat diet-induced fatty liver |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 高脂飲食 、皮質酮 、非酒精性脂肪肝 、脂肪酸移位酶 、類固醇生成 |
| 外文關鍵詞: | high-fat diet, corticosterone, NAFLD, CD36, steroidogenesis |
| 相關次數: | 點閱:138 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非酒精性脂肪肝病係指一種脂肪堆積在肝臟中的疾病。攝取過多的養份,如:西式飲食習慣,是一種導致非酒精性脂肪肝病發生的常見危險因子。在動物研究中,高脂飲食廣泛地用來誘發脂肪肝的產生。最近,我們發現餵食高脂飼料之後,會誘發老鼠產生脂肪肝以及增加血清皮脂酮濃度。皮質酮是一種嚙齒類中主要的醣皮質類固醇。此外,通過對老鼠雙邊腎上腺摘除手術能降低皮質酮濃度並有效減緩高脂飲食所引發的脂肪肝。據此,我們假設高脂飲食所導致的血清皮質酮濃度上升參與在高脂飼料誘發脂肪肝的進程中。L/ L小鼠,是一種在膽固醇側鏈解離酶基因的啟動子序列中,類固醇生成因子1結合位有突變的老鼠,能夠在不影響基礎皮質醇分泌的狀況下,抑止經由刺激所誘發的皮質醇分泌。實驗動物在12週的高脂飲食後,由高脂飲食所增加的血清皮脂酮以及脂肪肝都被L/ L突變所抑止。此外,在回補皮質酮到高脂飲食的L/ L小鼠後,能夠反轉L/ L突變對於脂肪肝的影響。接著我們探討皮質醇參與在高脂飲食所導致之脂肪肝的機制。我們發現肝臟中的CD36表現量,一種脂肪酸轉位酶,主要負責細胞對脂肪的攝取,在高脂飲食之後會增加,且在雙邊腎上腺摘除手術之後減少。而高脂飲食增加的脂肪酸轉位酶表現量能夠被L/ L突變所阻止,且回補皮質酮到高脂飲食的L/ L小鼠便能增加其脂肪酸轉位酶表現量。我們還發現皮脂酮能夠直接增加小鼠肝臟的脂肪酸轉位酶表現量。據此,我們認為由高脂飲食所增加的血清皮質酮參與脂肪肝的發生,並且是透過提升肝臟脂肪酸移位酶的表現量。
關鍵詞:高脂飲食;皮質酮;非酒精性脂肪肝;脂肪酸移位酶;類固醇生成
Nonalcoholic fatty liver disease (NAFLD) is a condition in which fat builds up in liver. Excessive nutrient, e.g. western pattern diet, is a common risk factor for NAFLD. In animal study, high-fat diet (HFD) is a widely used method to induce NAFLD. Recently, we found that mice fed with HFD had fatty liver and increased levels of corticosterone (CORT), the major glucocorticoid in rodents. Furthermore, reducing CORT by bilateral adrenalectomy (ADX) attenuated the HFD-induced fatty liver in mice. Accordingly, I hypothesize that HFD-induced increase of CORT contributes to the development of fatty liver in mice. The L/L mice, which have a mutated binding sequence for steroidogenic factor-1 on the promoter region of the Cyp11a1 gene that attenuates the stimulation-induced release of CORT without affecting the basal secretion of CORT. After 12-week HFD feeding, results showed that both the HFD-induced increases of CORT and fatty liver was blunted by L/L mutation. Besides, supplement of CORT reversed the L/L mutation effect in L/L-HFD mice. Next, we investigated the underlying mechanism for the involvement of CORT in the HFD-induced fatty liver. initially, we found the expression of hepatic CD36, a fatty acid translocase governing the uptake of lipid, was increased by HFD, and decreased after ADX surgery. Then, the HFD-induced CD36 was blunted by L/L mutation. And supplement of CORT increased the CD36 in L/L-HFD mice. In addition, we also found that CORT directly upregulated hepatic CD36 in mice. In conclusion, HFD-induced fatty liver is caused by increased plasma levels of CORT and upregulation of hepatic CD36.
Keywords: high-fat diet, corticosterone, NAFLD, CD36, steroidogenesis
1. Ahmed, M., Non-alcoholic fatty liver disease in 2015. World J Hepatol, 2015. 7(11): p. 1450-9.
2. Yamada, T., et al., Alcohol drinking may not be a major risk factor for fatty liver in Japanese undergoing a health checkup. Dig Dis Sci, 2010. 55(1): p. 176-82.
3. Dietrich, P. and C. Hellerbrand, Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol, 2014. 28(4): p. 637-53.
4. Chung, G.E., et al., Dietary patterns are associated with the prevalence of nonalcoholic fatty liver disease in Korean adults. Nutrition, 2019. 62: p. 32-38.
5. Wong, C.R., M.H. Nguyen, and J.K. Lim, Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. World J Gastroenterol, 2016. 22(37): p. 8294-8303.
6. Magee, N., A. Zou, and Y. Zhang, Pathogenesis of Nonalcoholic Steatohepatitis: Interactions between Liver Parenchymal and Nonparenchymal Cells. Biomed Res Int, 2016. 2016: p. 5170402.
7. Hariri, N. and L. Thibault, High-fat diet-induced obesity in animal models. Nutr Res Rev, 2010. 23(2): p. 270-99.
8. Ruhl, C.E. and J.E. Everhart, Epidemiology of nonalcoholic fatty liver. Clin Liver Dis, 2004. 8(3): p. 501-19, vii.
9. Marchesini, G., et al., Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology, 2003. 37(4): p. 917-23.
10. Yaligar, J., et al., Evaluation of dietary effects on hepatic lipids in high fat and placebo diet fed rats by in vivo MRS and LC-MS techniques. PLoS One, 2014. 9(3): p. e91436.
11. Shin, J., et al., SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep, 2013. 5(3): p. 654-665.
12. Andrews, R.C. and B.R. Walker, Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond), 1999. 96(5): p. 513-23.
13. Vegiopoulos, A. and S. Herzig, Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol, 2007. 275(1-2): p. 43-61.
14. Cruz-Topete, D. and J.A. Cidlowski, One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation, 2015. 22(1-2): p. 20-32.
15. Donatti, T.L., et al., Effects of glucocorticoids on growth and bone mineralization. J Pediatr (Rio J), 2011. 87(1): p. 4-12.
16. Nussinovitch, U., et al., Glucocorticoids and the cardiovascular system: state of the art. Curr Pharm Des, 2010. 16(32): p. 3574-85.
17. Joels, M., Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology, 2011. 36(3): p. 406-14.
18. Whirledge, S. and J.A. Cidlowski, Glucocorticoids and Reproduction: Traffic Control on the Road to Reproduction. Trends Endocrinol Metab, 2017. 28(6): p. 399-415.
19. Fowden, A.L. and A.J. Forhead, Glucocorticoids as regulatory signals during intrauterine development. Exp Physiol, 2015. 100(12): p. 1477-87.
20. Becker, D.E., Basic and clinical pharmacology of glucocorticosteroids. Anesth Prog, 2013. 60(1): p. 25-31; quiz 32.
21. Malkoski, S.P. and R.I. Dorin, Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol, 1999. 13(10): p. 1629-44.
22. Drouin, J., Y.L. Sun, and M. Nemer, Glucocorticoid repression of pro-opiomelanocortin gene transcription. J Steroid Biochem, 1989. 34(1-6): p. 63-9.
23. Di, S., et al., Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci, 2003. 23(12): p. 4850-7.
24. Di, S., et al., Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci, 2009. 29(2): p. 393-401.
25. He, Z., et al., Plasma Steroids and Cardiorespiratory Fitness Response to Regular Exercise, in Hormones, Metabolism and the Benefits of Exercise, B. Spiegelman, Editor. 2017: Cham (CH). p. 25-42.
26. Swierczynska, M.M., et al., Changes in morphology and function of adrenal cortex in mice fed a high-fat diet. Int J Obes (Lond), 2015. 39(2): p. 321-30.
27. Nasteska, D., et al., Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes, 2014. 63(7): p. 2332-43.
28. Bates, H.E., et al., Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes, 2012. 61(1): p. 40-8.
29. Tataranni, P.A., et al., Effects of glucocorticoids on energy metabolism and food intake in humans. Am J Physiol, 1996. 271(2 Pt 1): p. E317-25.
30. Dallman, M.F., N.C. Pecoraro, and S.E. la Fleur, Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun, 2005. 19(4): p. 275-80.
31. Spencer, S.J. and A. Tilbrook, The glucocorticoid contribution to obesity. Stress, 2011. 14(3): p. 233-46.
32. Wang, M., The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr Metab (Lond), 2005. 2(1): p. 3.
33. Rockall, A.G., et al., Hepatic steatosis in Cushing's syndrome: a radiological assessment using computed tomography. Eur J Endocrinol, 2003. 149(6): p. 543-8.
34. D'Souza A, M., et al., Consumption of a high-fat diet rapidly exacerbates the development of fatty liver disease that occurs with chronically elevated glucocorticoids. Am J Physiol Gastrointest Liver Physiol, 2012. 302(8): p. G850-63.
35. Silverstein, R.L. and M. Febbraio, CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal, 2009. 2(72): p. re3.
36. Su, X. and N.A. Abumrad, Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab, 2009. 20(2): p. 72-7.
37. Love-Gregory, L. and N.A. Abumrad, CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care, 2011. 14(6): p. 527-34.
38. Miller, Y.I., et al., Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res, 2011. 108(2): p. 235-48.
39. Silverstein, R.L., et al., Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc, 2010. 121: p. 206-20.
40. Abumrad, N.A. and N.O. Davidson, Role of the gut in lipid homeostasis. Physiol Rev, 2012. 92(3): p. 1061-85.
41. Glatz, J.F., J.J. Luiken, and A. Bonen, Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev, 2010. 90(1): p. 367-417.
42. Greco, D., et al., Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol, 2008. 294(5): p. G1281-7.
43. Wilson, C.G., et al., Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology, 2016. 157(2): p. 570-85.
44. Folch, J., M. Lees, and G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957. 226(1): p. 497-509.
45. Shih, M.C., et al., Mutation of mouse Cyp11a1 promoter caused tissue-specific reduction of gene expression and blunted stress response without affecting reproduction. Mol Endocrinol, 2008. 22(4): p. 915-23.
46. Janani, C. and B.D. Ranjitha Kumari, PPAR gamma gene--a review. Diabetes Metab Syndr, 2015. 9(1): p. 46-50.
47. Chapman, K., M. Holmes, and J. Seckl, 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev, 2013. 93(3): p. 1139-206.
48. Jensen-Urstad, A.P. and C.F. Semenkovich, Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta, 2012. 1821(5): p. 747-53.
49. Pepino, M.Y., et al., Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr, 2014. 34: p. 281-303.
50. Donato, M.T., L. Tolosa, and M.J. Gomez-Lechon, Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods Mol Biol, 2015. 1250: p. 77-93.
51. Geer, E.B., J. Islam, and C. Buettner, Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am, 2014. 43(1): p. 75-102.
52. Livingstone, D.E., et al., Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology, 2000. 141(2): p. 560-3.
53. Bowles, N.P., et al., A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci U S A, 2015. 112(1): p. 285-90.
54. Vilsboll, T., et al., Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab, 2003. 88(6): p. 2706-13.
55. Koonen, D.P., et al., Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes, 2007. 56(12): p. 2863-71.
56. Zhang, C., et al., Osteoprotegerin Promotes Liver Steatosis by Targeting the ERK-PPAR-gamma-CD36 Pathway. Diabetes, 2019. 68(10): p. 1902-1914.