簡易檢索 / 詳目顯示

研究生: 王玠能
Wang, jieh-neng
論文名稱: 兒童膿胸病患施行肋膜內纖維溶解激酶治療術之效用研究
Benefits of intrapleural fibrinolytic treatment in children with complicated parapneumonic pleural effusion
指導教授: 鄭瑞棠
Cheng, Juei-Tang
吳俊明
Wu, jing-ming
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 103
中文關鍵詞: 肺功能檢查兒童複雜性副肺炎積水纖維溶解激酶給予頻次蛋白質體發炎性細胞激素
外文關鍵詞: dose frequency, fibrinolytics, Children, complicated parapneumonic effusion, proteomics, pulmonary function, inflammatory cytokines
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於複雜性副肺炎積水(complicated parapneumonic effusion)正在形成膿胸(empyema)的過程中,是否只使用抗生素,或是需要何時該去做引流,或是採用何種方式的引流處理,目前對臨床醫師來說仍然是有很大的挑戰性。應用肋膜間施予纖維溶解激酶治療術(intrapleural fibrinolytic therapy)來治療複雜性副肺炎積水在臨床上是一種可能有效的治療方式,但是在孩童病患的使用上卻沒有足夠的資訊。因此,在我的博士論文裡,我嘗試去闡述對於兒童副肺炎積水,採用肋膜間施予纖維溶解激酶治療術,評估其臨床上的經驗與成果,並進一步探討其使用纖維溶解激酶治療術的實驗室證據。
    我研究的特殊目的包括:一、研究在肋膜間施予鏈球菌激酶纖維溶解治療兒童複雜性副肺炎積水的臨床治療成果;二、設計一個前瞻性研究來探討比較施予肋膜間纖維溶解激酶的頻次,以提供未來治療方法的依據;三、收集病患在接受肋膜間施以纖維溶解激酶治療的術前及術後的肺肋膜積水為材料,應用蛋白質體學(proteomics)研究法,應用二維電泳膠片法及質譜儀分析,鑑定出治療前後的蛋白質變化;四、探討利用肋膜間施予纖維溶解激酶藥物來治療肺肋膜積水的病患之後的纖維溶解活性和細胞激素的發炎反應之間的相關性;五、利用肺功能儀器來追蹤兒童膿胸病患的長期肺功能預後。
    第一部分的結果顯示,接受肋膜間纖維溶解激酶治療術的這組病患不論在發燒的天數以及需要進一步接受胸腔外科侵入性治療的比率,都比在過去使用傳統胸管引流合併抗生素治療的對照組明顯減少。因此我們初步認為施予膜間纖維溶解激酶治療術的臨床成果有效,而且可以減少外科手術治療的比率。
    接著在第二部分的研究,為了探討比較施予肋膜間纖維溶解激酶的頻次,控制每天使用相等同的劑量下,在一組病患每天施予一次,另一組病患每天施予兩次;比較其臨床表徵、以及治療成果。結果顯示無論施予一次、或是施予兩次,纖維溶解酵素治療術的皆可以減少病患需要進一步接受胸腔外科侵入性的比率;兩種方法的臨床成果都有效。
    在第三部分的研究顯示在治療前後的二維電泳膠片中,總共觀察到640對蛋白質點,而其中有76對膠片上的點具有統計上的差異;其中63個點在治療後減少,13個點在治療後增加。將這些點來做進一步的蛋白質鑑定時,總共在37個點中鑑定出25個不重覆的蛋白質。增加的蛋白質點主要是纖維蛋白的碎片增加,例如fibrinogen以及相關的蛋白,這足以解釋纖維溶解激酶的理論機制;減少的蛋白質點主要是一些蛋白酵素例如alpha-1-antitrysin及相關的蛋白,以及急性發炎性的蛋白質,例如haptoglobin以及相關的蛋白。總體來說,肋膜間施予纖維溶解激酶治療術不止有纖維溶解的機轉,也可能有調控發炎反應的可能性。
    在第四部分的研究結果顯示,接受纖維溶解激酶治療的這一組病患在治療後有較高濃度的urokinase plasminogen activator(u-PA),但也抑制了plasminogen activator inhibitor (PAI) 的濃度;同時也看到tissue inhibitors of metalloproteinase (TIMP-2)的濃度在治療後的下降,這結果暗示纖維溶解激酶治療可以藉由抑制PAI的活性來促進纖維溶解蛋白的活性,以及抑制TIMP-2可能對肋膜的發炎反應有調控的作用。
    在第五部分的研究中,結果呈現接受纖維溶解激酶治療組的病患肺活量(Force vital capacity, FVC)以及第一秒用力呼氣容積(forced expiratory volume in one second, FEV1)比起接受傳統治療組與外科手術治療的兩組病患,都有統計上顯著的進步。這結果顯示纖維溶解激酶治療對於病患的長期肺功能也有改善的作用。
    總括來說,我的論文證明了在兒童複雜性副肺炎積水的病患,利用肋膜間施予纖維溶解激酶治療術,在臨床上是一項可靠且有效的治療方法;纖維溶解激酶治療的角色,除了傳統的觀念是增加纖維溶解蛋白的活性,使肋膜積水容易清除外;同時也兼具有調控肋膜間發炎反應的可能性。因此在這種疾病的治療選項上,纖維溶解激酶治療術應該是一個重要的選項。

    Parapneumonic effusions challenge clinicians to determine whether they will respond to antibiotics alone, or whether the patient requires pleural drainage to manage an established empyema or prevent an empyema from forming. Although chemical fibrinolysis has been used to manage complicated parapneumonic effusion, less information is available on using intrapleural fibrinolytic therapy in pediatric patients. Accordingly, in this PhD dissertation, I intended to investigate the clinical efficiency and laboratory evidence of intrapleural fibrinolytic therapy in children with complicated parapneumonic effusion.
    The specific aims of my project were as follows: (1) to study the clinical effects of intrapleural instillations of streptokinase in the management of parapneumonic effusion in children; (2) to assess the frequency of administration of fibrinolytic treatment in order to provide evidence for clinical use; (3) to investigate the proteomic profiling data of complicated parapneumonic pleural effusion in pediatric patients, as obtained by two-dimensional gel electrophoresis (2D-GE) and protein identification using electrospray ionization tandem mass spectrometry (ESI-MS/MS); (4) to use a cytokine array kit to screen various cytokines in complicated parapneumonic effusion patients receiving or not receiving intrapleural fibrinolytic therapy to compare the differences between these two groups; and (5) to follow up a pulmonary function study in children with parapneumonic effusion.
    The results for the first aim showed that the duration of fever after chest tube insertion was also significantly lower in the study group. Fewer patients in the streptokinase group required surgical intervention than in the comparison group. This led to the conclusion that intrapleural fibrinolytic therapy with streptokinase is safe and effective, and can obviate the need for surgery in most cases.
    The results for the second aim showed that there were no significant differences between the once- and twice-daily groups. Thus, we found that both once- and twice-daily administration of urokinase were similarly efficacious and resulted in good clinical outcomes.
    The results for the third aim showed that a total of 640 pairs of silver-stained protein spots were observed and 76 differences (13 increased, 63 decreased) were detected. Altogether, 37 significant changes to gel spots were selected for protein identification by in-gel digestion, liquid chromatography–tandem mass spectrometry and sequence database search. Among these proteins, those that significantly increased after fibrinolytic therapy reflected the effects of fibrinolytics, such as the fibrinogen gamma chain and fragments of fibrinogen. In those significantly decreased proteins, haptoglobin and related proteins, and alpha-1 antitrypsin and related proteins were observed. Taken together, we suggested that intrapleural fibrinolytic therapy enhanced fibrinolytic activity and decreased inflammatory activity in pleural space.
    The results for the fourth aim showed the patients in the fibrinolytic study group had significantly lower plasminogen activator inhibitor (PAI) levels and higher urokinase plasminogen activator (u-PA) levels than before treatment. Moreover, the tissue inhibitors of metalloproteinase-2 (TIMP-2) were also significantly lower in the study group after fibrinolytic therapy. That might indicate that TIMP-2 is implicated in the local inflammatory response in complicated parapneumonic effusion patients.
    The results for the fifth aim showed that the fibrinolytic group had significantly higher forced vital capacity (FVC) and forced expiratory volume in one second (FEV1). These results also imply the benefits of intrapleural fibrinolytics.
    In conclusion, my dissertation demonstrated the benefits of intrapleural fibrinolytic therapy in children with complicated parapneumonic effusion. The role of intrapleural fibrinolytics not only facilitated pleural effusion drainage by working on the plasminogen activator, but also demonstrated local anti-inflammatory effects in the pleural space. Accordingly, when using interventions to control complicated parapneumonic effusion using intrapleural fibrinolytics, one might consider therapeutic options for these patients.

    Index 8 Abstract (Chinese) 3 Abstract (English) 5 Acknowledgement 7 Introduction 10 1. Intrapleural fibrinolytic therapy is beneficial to children with complicated parapneumonic effusion 15 1.1 Background 15 1.1 Aims 15 1.1 Materials and Methods 15 1.1 Results 17 1.1 Conclusion and brief discussion 18 1.1 Table and Figure Legends 20 2. Study of administration of frequency of intrapleural fibrinolytics 26 2.1 Background 26 2.1 Aims 27 2.1 Materials and Methods 27 2.1 Results 29 2.1 Conclusion and brief discussion 30 2.1 Table and Figure Legends 32 3. Application of proteomic analysis in pleural effusion after fibrinolytic therapy 36 3.1 Background 36 3.2 Aims 37 3.3 Materials and Methods 37 3.4 Results 41 3.5 Conclusion and brief discussion 42 3.6 Table and Figure Legends 45 4. The role of intrapleural fibrinolytics in proinflammatory cytokines and fibrinolytic enzymes 55 4.1 Background 55 4.2 Aims 56 4.3 Materials and Methods 56 4.4 Results 59 4.5 Conclusion and brief discussion 61 4.6 Table and Figure Legends 63 5. Follow-up study for pulmonary function evaluation in pediatric patients with complicated parapneumonic pleural effusion 72 5.1 Background 72 5.2 Aims 72 5.3 Materials and Methods 73 5.4 Results 75 5.5 Conclusion and brief discussion 76 5.6 Table and Figure Legends 79 6. Summary of the dissertation 83 Further works 85 Appendix 87 References 91 The publication related to this dissertation 99 The publication during 1999 ~ 2009 100

    Aleman C, Alegre J, Monasterio J, et al. Association between inflammatory mediators and the fibrinolysis system in infectious pleural effusions. Clin Sci 2003;105:601-607.
    Alexandrakis M, Coulocheri S, Kyriakou D, et al. Diagnostic value of ferritin, haptoglobin, alpha;1-antitrypsin, lactate dehydrogenase and complement factors C3 and C4 in pleural effusion differentiation. Respir Med 1997;91:517-523.
    Alfageme I, Munoz F, Pena N, et al. Empyema of the thorax in adults. Etiology, microbiologic findings, and management. Chest 1993;103:839-843.
    American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am J Respir Crit Care Med 1991;144:1202-1218.
    American Thoracic Society. Standardization of Spirometry 1994 Update. Am J Respir Crit Care Med 1995;152:1107-1136.
    Agrenius V, Chmielewska J, Widström O, et al. Pleural fibrinolytic activity is decreased in inflammation as demonstrated in quinacrine pleurodesis treatment of malignant pleural effusion. Am Rev Respir Dis 1989;140:1381–1385.
    Avansino JR, Goldman B, Sawin RS, et al. Primary operative versus nonoperative therapy for pediatric empyema: a meta-analysis. Pediatrics 2005;115:1652-1659.
    Balfour-Lynn IM, Abrahamson E, Cohen G, et al. BTS guidelines for the management of pleural infection in children. Thorax 2005;60(Suppl 1):i1–21.
    Bajaj MS, Pendurthi U, Koenig K, et al. Tissue factor pathway inhibitor expression by human pleural mesothelial and mesothelioma cells. Euro Respir J 2000;15:1069-1078.
    Barbato A, Panizzolo C, Monciotti C, et al. Use of urokinase in childhood pleural empyema. Pediatr Pulmonol 2003;35:50-55.
    Bell DY, Haseman JA, Spock A, et al. Plasma proteins of the bronchoalveolar surface of the lungs of smokers and nonsmokers. Am Rev Respir Dis 1981;124:72-79.
    Bithell TC. Blood coagulation. In: Lee GR, Bithell TC, Foerster J, et al, ed. Wintrobe's Clinical Hematology. 9th ed. Philadelphia, PA: Lea & Febiger, 1993; 566–615.
    Bouros D, Schiza S, Patsourakis G, et al. Intrapleural streptokinasse versus normal saline in the treatment of complicated parapneumonic effusions and empyema. Am J Respir Crit Care Med 1997;155:291-295.
    Bouros D, Schiza S, Tzanakis N, et al. Intrapleural urokinase versus normal saline in the treatment of complicated parapneumonic effusions and empyema. A randomized, double-blind study. Am J Respir Crit Care Med 1999;159:37-42.
    Çalikoglu M, Sezer C, Ünlu C, et al. Use of acute phase proteins in pleural effusion discrimination. Tüberküloz ve Toraks Dergisi 2004;52:122-129.
    Cameron RJ, Davies HR. Intra-pleural fibrinolytic therapy versus conservative management in the treatment of adult parapneumonic effusions and empyema. Cochrane Database of Systematic Reviews 2008, Issue 2. Art. No.: CD002312. doi: 10.1002/14651858.
    Chan W, Keyser-Grauvin E, Davis GM, et al. Empyema thoracic in children: a 26 year review of the Montreal Children's Hospital experience. J Pediatr Surg 1997;32:870-872.
    Chapman SJ, Davies RJ. Recent advances in parapneumonic effusion and empyema. Curr Opin Pulm Med 2004;10:299-304.
    Chin NK, Lim TK. Controlled trial of intrapleural streptokinase in the treatment of pleural empyema and complicated parapneumonic effusions. Chest 1997;111:275-279.
    Chiu CY, Wong KS, Huang JL, et al. Proinflammatory cytokines, fibrinolytic system enzymes, and biochemical indices in children with infectious parapneumonic effusions. Pediatr Infect Dis J. 2008;27:699-703.
    Chung CL, Chen CH, Sheu JR, et al. Proinflammatory cytokines, transforming growth factor- ß1, and fibrinolytic enzymes in loculated and free-flowing pleural exudates. Chest 2005;128:690–697.
    Cochran JB, Tecklenburg FW, Turner RB. Intrapleural instillation of fibrinolytic agents for treatment of pleural empyema. Pediatr Crit Care Med 2004;4:39-43.
    Coote N. Surgical versus non-surgical management of pleural empyema. Cochrane Database of Systemic Reviews. 2005, Issue 4. Art. No.: CD001956. doi: 10.1002/14651858.
    Davies RJO, Traill ZC, Gleeson FV. Randomised controlled trial of intrapleureal streptokinase in community acquired pleural infection. Thorax 1997;52:416-421.
    Davies CW, Lok S, Davies RJ. The systemic fibrinolytic activity of intrapleural streptokinase. Am J Respir Crit Care Med 1998;157:328-330.
    De Benedictis FM, Giorgi GD, Niccoli A, et al. Treatment of complicated pleural effusion with intracavitary urokinase in children. Pediatr Pulmonol 2000;29:438-442.
    Diacon AH, Theron J, Schuurmans MM et al. Intrapleural streptokinase for empyema and complicated parapneumonic effusions. Am J Respir Crit Care Med 2004;170:49-53.
    Eickelberg O, Sommerfeld CO, Wyser C, et al. MMP and TIMP expression pattern in pleural effusions of different origins. Am J Respir Crit Care Med 1997;156:1987-1992.
    Freij BJ, Kusniesz H, Nelson JD, et al. Parapneumonic effusions and empyema in hospitalized children: a retrospective review of 227 cases. Pediatr Infect Dis 1984;3:578-591.
    Gadek JE, Fells GA, Zimmerman RL, et al. Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema. Clin Invest 1981;68:889-898.
    Davies CW, Gleeson FV, Davies RJ, et al. Pleural Diseases Group, Standards of Core Committee Bristish Thoracic Society. BTS guidelines for the management of pleural infection. Thorax 2003;58(Suppl 2):ii18-28.
    Glauser FL, Otis PT, Levine RL, et al. In vitro pleural fluid clottability and fibrinogen content. Chest 1975;68:205-208.
    Gerner C, Steinkellner W, Holzmann K, et al. Elevated plasma levels of crosslinked fibrinogen gamma-chain dimer indicate cancer-related fibrin deposition and fibrinolysis. Thromb Haemost 2001;85:494-501.
    Gocmen A, Kiper N, Toppare M, et al. Conservative treatment of empyema in children. Respiration 1993;60:182-185.
    Hardie WD, Roberts NE, Reising SF, et al. Complicated parapneumonic effusions in children caused by penicillin-nonsusceptible Streptococcus pneumoniae. Pediatrics 1998;101:388-392.
    Heffner JE. Multicenter trials of treatment for empyema – after all these years. N Engl J Med 2005;352:926-928.
    Hoff SJ, Neblett III WW, Heller RM, et al. Postpneumonic empyema in childhood: selecting appropriate therapy. J Pediatr Surg 1989;24:659-663.
    Holden RW. Plasminogen activators: pharmacology and therapy. Radiology 1990;174:993-1001.
    Hoffmann JC, Kru¨ger H, Lu¨hrs J, et al Detection of soluble adhesion molecules in pleural effusions. Chest 1996;110:107-113.
    Hua CC, Chang LC, Chen YC, et al. Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest 1999;116:1292–1296.
    Huang RP, Huang R, Fan Y, et al. Simultaneous detection of multiple cytokines from conditioned media and patient’s sera by an antibody-based protein array system. Anal Biochem 2001;294:55–62.
    Hurewitz AN, Zucker S, Mancuso P, et al. Human pleural effusions are rich in matrix metalloproteinases. Chest 1992;102:1808-1814.
    Idell S, Girard W, Koenig KB, et al. Abnormalities of pathways of fibrin turnover in the human pleural space. Am Rev Respir Dis 1991;144:187-194.
    Idell S, Zwieb C, Kumar A, et al. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1992;7:414–426.
    Johnston ID. Effect of pneumonia in childhood on adult lung function. J Pediatr 1999;135:S33-S37.
    Johnston ID, Strachan DP, Anderson HR. Effect of pneumonia and whooping cough in children on adult lung function. N Engl J Med 1998;338:581-587.
    Kalomenidis I, Mohamed KH, Lane KB, et al. Pleural fluid levels of vascular cell adhesion molecule-1 are elevated in eosinophilic pleural effusions. Chest 2003;124:159-166.
    Kilic N, Celebi S, Gurpinar A, et al. Management of thoracic empyema in children. Pediatr Surg Int 2002;18:21-23.
    Kjellman B. Pulmonary function in children with Mycoplasma pneumoniae pneumonia. Infection 1976;4:71-74.
    Kohn GL, Walston C, Feldstein J, et al. Persistent abnormal lung function after childhood empyema. Am J Respir Med 2002;1:441-445.
    Kornecki A, Sivan Y. Treatment of loculated pleural effusion with intrapleural urokinase in children. J Pediatr Surg 1997;32:1473-1475.
    Krishnan S, Amin N, Dozor AJ, et al. Urokinase in the management of complicated parapneumonic effusions in children. Chest 1997;112:1579-1583.
    Light RW. A new classification of parapneumonic effusions and empyema. Chest 1995;108:299-301.
    Lin FC, Chen YC, Chen FJ, et al. Cytokines and fibrinolytic enzymes in tuberculous and parapneumonic effusions. Clin Immunol 2005;116:166-173.
    Lglesias D, Alegre J, Aleman C, et al. Metalloproteinases and tissue inhibitors of metalloproteinases in exudative pleural effusions. Eur Respir J 2005: 25:104-109.
    Marder VJ, Sherry S. Thrombolytic therapy: current status (1). N Eng J Med 1988;318:1512-1520.
    Maskell NA, Davies CW, Nunn AJ et al. U.K. Controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 2005;352:865-874.
    McLaughlin FJ, Goldmann DA, Rosenbaum DM, et al. Empyema in children: clinical course and long-term follow-up. Pediatrics 1984;73:587-593.
    Mortimer KM, Fallot A, Balmes JR, et al. Evaluating the use of a portable spirometer in a study of pediatric asthma. Chest 2003;123:1899-1907.
    Moulton JS, Moore PT, Mencini RA. Treatment of loculated pleural effusions with transcatheter intracavitary urokinase. Am J Radiol 1989;153:941-945.
    Moulton JS, Benkert RE, Weisiger KH, et al. Treatment of complicated pleural fluid collections with image-guided drainage and intracavitary urokinase. Chest 1995;108:1252-1259.
    Muller B, von Wichert P. Identical serum proteins and specific bronchoalveolar lavage proteins in the adult human and the rat. Am Rev Respir Dis 1984;130:674-677.
    Nasser C. Peritoneal molecular environment, adhesion formation and clinical implication. Frontiers in Bioscience 2002;7:e91-e115.
    Nilsson CL, Puchades M, Westman A, et al. Identification of proteins in a human pleural exudate using two-dimensional preparative liquid-phase electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 1999;20:860-865.
    Noble V, Murray M, Webb MS, et al. Respiratory status and allergy nine to 10 years after acute bronchiolitis. Arch Dis Child 1997;76:315-319.
    Oliviero S, Cortese R. The human haptoglobin gene promoter: interleukin-6-responsive elements interact with a DNA-binding protein induced by interleukin-6. EMBO J 1989;8:1145–1151.
    Ozcelik C, Inci I, Nizam O, et al. Intrapleural fibrinolytic treatment of multiloculated postpneumonic pediatric empyemas. Ann Thorac Surg 2003;76:1849-1853.
    Pardanani A, Wieben ED, Spelsberg TC, et al. Primer on medical genomics part IV: expression proteomics. Mayo Clin Proc 2002;77:1185-1196.
    Philip-Joët F, Alessi MC, Philip-Joët C, et al. Fibrinolytic and inflammatory processes in pleural effusions. Eur Respir J 1995;8:1352–1356.
    Pugin J, Widmer MC, Kossodo S, et al. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am J Respir Cell Mol Biol 1999;20:458-464.
    Redding GJ, Walund L, Walund D, et al. Lung function in children following empyema. Am J Dis Child 1990;144:1337-1342.
    Robinson LA, Moulton AL, Fleming WH, et al. Intrapleural fibrinolytic treatment of multiloculated thoracic empyemas. Ann Thorac Surg 1994;57:803-814.
    Rosen H, Nadkarni V, Theroux M, et al. Intrapleural streptokinase as adjunctive treatment for persistent empyema in pediatric patients. Chest 1993;103:1190-1193.
    Rothenberg ME , Zimmermann N, Mishra A, et al. Chemokines and chemokines receptors: their role in allergic airway disease. J Clin Immunol 1999;19:250–265.
    Sahn SA. Use of fibrinolytic agents in the management of complicated parapneumonic effusions and empyemas. Thorax 1998;53(Suppl 2):S65-S72.
    Shoseyov D, Bibi H, Shatzberg G, et al. Short-term course and outcome of treatments of pleeural empyema in pediatric patients. Chest 2002;121:836-840.
    Simpson G, Roomes D, Heron M. Effects of streptokinase and deoxyribonuclease on viscosity of human surgical and empyema pus. Chest 2000;117:1728-1733.
    Snoeck V, Peters I, Cox E. The IgA system: a comparison of structure and function in different species". Vet Res 2006;37:455–467.
    Sorensen J, Kald B, Tagesson C, et al. Platelet-activating factor and phospholipase A2 in patients with septic shock and trauma. Intensive Care Med 1994;20:555-561.
    Spottl F, Kaiser R. Rapid detection and quantitation of precipitating streptokinase-antibodies. Thromb Diath Haemorrh 1974;32:608-616.
    St Peter SD, Tsao K, Harrison C, et al. Thoracoscopic decortication vs tube thoracostomy with fibrinolysis for empyema in children: a prospective, randomized trial. J Pediatr Surg 2009;44:106–111.
    Strange C, Allen ML, Harley R, et al. Intrapleural streptokinase in experimental emypema. Am Rev Respir Dis 1993;147:962-966.
    Taryle DA, Potts DE, Sahn SA. The incidence and clinical correlates of parapneumonic effusions in pneumonococcal pneumonia. Chest 1978;74:170-173.
    Thomson AH, Hull J, Kumar MR, et al. Randomised trial of intrapleural urokinase in the treatment of childhood empyema. Thorax 2002;57:343-347.
    Tillett WS, Sherry S. The effect in patients with streptococcal fibrinolysis (streptokinasse) and streptococcal desoxyribonuclease on fibrinous, purulent, and sanguinous pleural exudations. J Clin Invest 1949;28:173-190.
    Tuncozgur B, Ustunsoy H, Sivrikoz MC et al. Intrapleural urokinase in the management of parapneumonic empyema: a randomised controlled trial. Int J Clin Pract 2001;55:658-660.
    Tyan YC, Wu HY, Su WC, et al. Proteomic analysis of human pleural effusion. Proteomics 2005;5:1062-1074.
    Tyan YC, Wu HY, Lai WW, et al. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteomic Research 2005;4:1274-1286.
    Wang JN, Yao CT, Yeh CN, et al. Once-daily versus twice-daily intrapleural urokinase treatment of complicated parapneumonic effusion in pediatric patients: a randomised, prospective study. Int J Clin Pract 2006;60:1225-1230.
    Weinstein M, Restrepo R, Chait PG, et al. Effectiveness and safety of tissue plasminogen activator in the management of complicated parapneumonic effusions. Pediatrics 2004;113:e182-e185.
    Wells RG, Havens PL. Intrapleural fibrinolysis for parapneumonic effusion and empyema in children. Radiology 2003;228:370-378.
    Whawell SA, Thompson JN. Cytokine-induced release of plasminogen activator inhibitor-1 by human mesothelial cells. Eur J Surg 1995;161:315–317.
    Winterbauer RH, Lammert J, Selland M, et al. Bronchoalveolar lavage cell populations in the diagnosis of sarcoidosis Chest 1993;104:352-361.
    Wise B, Beaudry PH, Bates DV. Long-term follow up of staplylococcal pneumonia. Pediatrics 1966;38:398-401.
    Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991;5:2145-2154.
    Yao CT, Wu JM, Liu CC, et al. Treatment of complicated parapneumonic pleural effusion with intrapleural streptokinase in children. Chest 2004;125:566-571.
    Zapletal A, Samanek M, Paul T. Lung function in children and adolescent. Method, reference values. Prog Respir Res 1987;22:1-22.

    下載圖示 校內:2014-08-13公開
    校外:2014-08-13公開
    QR CODE