| 研究生: |
方毓傑 Fang, Yu-Chieh |
|---|---|
| 論文名稱: |
低溫氧化於商業型結晶矽太陽電池之研究 The Study of Low Temperature Oxidation on the Commercial Crystalline Silicon Solar Cell |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蔡進耀 Tsai, Chin-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 太陽電池 、氧化 |
| 外文關鍵詞: | oxidation, solar cell |
| 相關次數: | 點閱:29 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用改良型態的氧化技術,利用photo-CVD的氘燈於腔體進行低溫氧化反應(< 500℃),並以網版印刷的方式製作太陽電池。
主要討論不同氧化溫度下所生成的SiO2薄膜的品質。利用AFM分析其表面粗糙度;FTIR分析元素鍵結;以及使用C-V量測換算Dit來觀察界面的品質。最後組合PECVD沉積SiNx薄膜來研究其反射和折射率等光學特性,並應用於太陽電池的製程上。
在太陽電池的應用上,我們發現使用雙層抗反射層可以增加光線的吸收,以及更良好的表面鈍化效果,從短路電流的數據中,可以得到相同的結果。且使用此氧化法,可以降低一般熱氧化法所需的熱預算。
In this thesis, we use the improved method on oxidation. We use D2 lamp and photo-CVD chamber to advance oxidation at lower temperature (<500℃) and use screen-printing technique to produce solar cells.
We mainly discuss the quality of SiO2 at different temperatures. We use AFM to measure the roughness of surface, FTIR spectrum to analyze the bonding of elements and C-V measurements to calculate Dit to observe the interfacial quality. Finally, we combine SiO2 with SiNx deposited by PECVD to measure the optical characteristics such as reflectance and refractive index. We also apply it to solar cell fabrication.
We find this double layer antireflection coatings can improve the absorption of photons and have better interfacial quality. The measurements of short circuit current also show the same effect and we can use this photo-assist oxidation to reduce the thermal budget compared to common thermal oxidation.
[1] 莊嘉琛, 太陽能工程-太陽電池篇, 全華, 1997
[2] Greg P. Smestad, Optoelectronics of Solar Cells, SPIE PRESS, 2002
[3] Jeffrey A. Mazer, SOLAR CELLS: An Introduction to Crystalline Photovoltaic Technology, Kluwer Academic Publishers, 1997
[4] Jozef Szlufcik, S. Sivoththamna, Johan F. Nijs, Robert P. Mertens, Roger Van Overstraeten, Low-Cost Industrial Technologies of Crystalline Silicon Solar Cells, PROCEEDINGS OF THE IEEE, 85, 5, 1997
[5] 莊達人, VLSI製造技術, 高立, 2002
[6] Stanley Wolf, SILCON PROCESSING FOR THE VLSI ERA, LATTICE PRESS, 2000
[7] Shreesh Narasimha, Ajeet Rohatgi, A. W. Weeber, An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cell, IEEE TRANSACTIONS ON ELECTRON DEVICES, 46, 7, 1999
[8] Jan Schmidt, Mark Kerr, Andres Cuevas, Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks, Semiconductor Science and Technology, 16, 2001
[9] B. Thuillier, J.P. Boyeaux, A. Kaminski, A. Laugier, Transmission electron microscopy and EDS analysis of screen-printed contacts formation on multicrystalline silicon solar cells, Materials Science and Engineering B, 102, 2003
[10] Jenny Nelson, THE PHYSICS OF SOLAR CELLS, Imperial College Press, 2003
[11] M. J. Kerr, J. Schmidt, A. Cuevas, J. H. Bultman, Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide, J. Appl. Phys., 89, 7, 2001
[12] Hans Joachim Moller, Semiconductors for Solar Cells, Artech House, 1993
[13] Donald A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 2003
[14] Sze, S. M. Semiconductor Devices: Physics and Technology. New York: Wiley, 1985
[15] S. Sivoththaman, W. Laureys, P. De Schepper, J. Nijs, R. Mertens, Selective Emitters in Si by Single Step Rapid Thermal Diffusion for Photovoltaic Devices, IEEE ELECTRON DEVICE LETTERS, 21, 6, 2000
[16] 許建興, 以高密度電漿化學氣相沉積系統成長與蝕刻氮化矽薄膜, 逢甲大學化學工程學系碩士論文, 2003
[17] D. Mathiot, Modeling of hydrogen diffusion in n- and p-type silicon, Phys. Rev. B, 40, 1989
[18] S. Sivaram, Chemical Vapor Deposition, Van Nostrand Reinhold, 1995
[19] 魏慕慈, 以射頻磁控濺鍍法低溫備製高介電係數鈦酸鍶鋇薄膜應用於動態隨機存取記憶體電容器之研究, 成功大學電機工程研究所碩士論文, 2001
[20] D. Ratakonda, R. Singh, L. Vedula, A. Rohatgi, J. Mejia, S. Narayanan, Rapid Thermal Processing of Screen Printed Ohmic Contacts, J. Electrochem. Soc., 144, 9, 1997
[21] 陳松延, 以 In-Line PECVD 快速沉積 SiNx:H 抗反射層於商業型結晶矽太陽電池之研究, 成功大學光電科學與工程研究所碩士論文, 2004
[22] 張偉智, 以液相沉積法成長二氧化矽及其在 MIS 太陽電池上之應用, 成功大學電機工程研究所碩士論文, 1997
[23] Dieter K. Schroder, SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION, John Wiley, 1998
[24] Z. Chen, K. Yasutake, A. Doolittle, A. Rohatgi, Record low SiO2/Si interface state density for low temperature oxides prepared by direct plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 63, 15, 1993
[25] Ajeet Rohatgi, Shreesh Narasimha, Abasifreke U. Ebong, Parag Doshi, Understanding and Implementation of Rapid Thermal Technologies for High-Efficiency Silicon Solar Cell, IEEE TRANSACTIONS ON ELECTRON DEVICES, 40, 10, 1999
[26] W. A. Hill, C. C. Coleman, A Single-Frequency Approximation for Interface State Density Determination, Solid-State Electron. 23, 1980
[27] E. H. Nicollian, A. Goetzberger, The Si-SiO2 Interface – Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique, Bell Syst. Tech. J., 46, 1967
[28] S. Winderbaum, F. Yun, O. Reinhold, Application of plasma enhanced chemical vapor deposition silicon nitride as a double layer antireflection coating and passivation layer for polysilicon solar cells, J. Vac. Sci. Technol. A, 15, 3, 1997
[29] R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, 1989
[30] L. Cai, A. Rohatgi, D. Yang, M. A. El-Sayed, Effect of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films, J. Appl. Phys. 80, 9, 1996
[31] Antonio Luque, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger, Bristol and Philadelphia, 1989
[32] GARY C. CHEEK, ROBERT P. MERTENS, ROGER VAN OVERSTRAETEN, LOUIS FRISSON, Thick-Film Metallization for Solar Cell Applications, IEEE TRANSACTIONS ON ELECTRON DEVICES, 31, 5, 1984
[33] C. Ballif, D. M. Huljic, G. Willeke, A. Hessler-Wyser, Silver thick-film contacts on highly doped n-type silicon emitters: Structural and electronic properties of the interface, Appl. Phys. Lett., 82, 12, 2003