| 研究生: |
蔡承儒 Tsai, Cheng-Ju |
|---|---|
| 論文名稱: |
探討子宮內膜異位症中炭疽毒素受體-2如何調控YAP1核轉移 Investigating how Anthrax Toxin Receptor 2 regulates YAP1 nuclear translocation in endometriosis |
| 指導教授: |
吳孟興
Wu, Meng-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 子宮內膜異位症 、炭疽毒素受體-2 、hippo信號路徑 、SAV1 |
| 外文關鍵詞: | Endometriosis , ANTXR2, Hippo pathway, SAV1 |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮內膜異位症是指子宮內膜組織生長在子宮腔以外的任何部位,屬於婦科中最常見的慢性疾病。不幸的是臨床上並沒有有效治療子宮內膜異位症的方法,因此研究子宮內膜異位症病理機制是必要的。以過往我們實驗室研究發現一個具有細胞外基質的貼附功能的膜蛋白,炭疽毒素受體-2,其表現量在子宮內膜的異位組織中有上升的趨勢。不正常大量表現的炭疽毒素受體-2甚至可以藉由增加YAP1細胞核轉移與下游基因的轉錄活性,促進子宮內膜細胞的沾黏能力和存活能力。然而,炭疽毒素受體-2如何調控YAP1細胞核轉移的機制尚未清楚。先前實驗室藉由生物資訊的方式,推測hippo信號路徑可能是炭疽毒素受體-2的潛在調控下游分子路徑。因此我們假設炭疽毒素受體-2也許與hippo信號路徑當中的分子相互作用,影響YAP1細胞核轉移。接下來,我們利用炭疽毒素受體-2的抗體,在子宮內膜異位症患者的異位基質細胞做免疫沉澱,發現hippo信號路徑MST激酶的骨架蛋白SAV1可以與炭疽毒素受體-2一起被沉澱下來。為了瞭解是否炭疽毒素受體-2藉由結合SAV1來參與在子宮內膜異位症的進程,我們轉染質體到人類胚胎腎細胞,來過度表達野生型或突變的炭疽毒素受體-2和SAV1,在免疫沉澱法下觀察這兩個蛋白會透過何種特定的結構域。起初我們發現即使剔除炭疽毒素受體-2蛋白質序列C端121個胺基酸後,SAV1仍然可以與突變的炭疽毒素受體-2一起被沉澱下來。分析突變炭疽毒素受體-2在細胞內剩餘的胺基酸後,我們預測炭疽毒素受體-2序列上有一個富脯氨酸模體,有很高的機率與SAV1上的雙色胺酸結構域結合。結果顯示,當SAV1上的雙色胺酸結構域被突變或炭疽毒素受體-2上的富脯氨酸模體被剔除後,便消除兩個蛋白的交互作用。總結來說,我們的結果進一步說明炭疽毒素受體-2可以透過結合SAV1,影響YAP1細胞核轉移和下游基因轉錄活性,促使子宮內膜異位症進程。
Endometriosis, characterized by the presence of endometrial tissue outside the uterine cavity, is one of the most common chronic gynecological diseases. Unfortunately, there is no cure for this disease. Therefore, it is important to elucidate the underlying mechanism of endometriosis development. Our laboratory has previously shown that anthrax toxin receptor 2 (ANTXR2) is aberrantly expressed in endometriotic cells and overexpression of ANTXR2 promotes endometriotic cells adhesion and survival through an increase of Yes-associated protein 1 (YAP1) nuclear translocation and transcriptional activity. However, how ANTXR2 regulates YAP1 activation remains uncharacterized. Since Hippo pathway is one of potential ANTXR2-regulated signaling pathways under bioinformatic analysis, we hypothesized that ANTXR2 signaling may cross-talk with Hippo pathway through protein-protein interaction upstream of YAP1. Herein, we found Salvador homolog 1 (SAV1), the scaffold protein of MST kinase (Hippo orthologue), can be pulled down by anti-ANTXR2 antibody in endometriotic stromal cell via immunoprecipitation assay. To test whether ANTXR2-SAV1 interaction involves in endometriosis development, the human embryonic kidney cells (HEK293FT) were used to investigate how ANTXR2 binds to SAV1. Overexpression of wildtype or mutant ANTXR2 and SAV1 were achieved through plasmid transfection. We found that SAV1 could interact with ANTXR2 even though the C-terminal 121 amino acids were deleted. After analyzing the remaining intracellular domain of ANTXR2, a proline-rich motif was predicted to have high possibility to bind SAV1 at the WW domain. In our results, when the WW domain of SAV1 was mutated or the proline-rich motif of ANTXR2 was deleted, the interaction between ANTXR2 and SAV1 was abolished. Collectively, our results so far suggested that ANTXR2 affects YAP1 nuclear translocation and activity in endometriotic cells is via cross-talking with Hippo pathway by binding to the SAV1.
1. Olive DL, Schwartz LB. Endometriosis. N Engl J Med 1993; 328: 1759-1769.
2. Missmer SA, Cramer DW. The epidemiology of endometriosis. Obstet Gynecol Clin North Am 2003; 30: 1-19, vii.
3. Sensky TE, Liu DT. Endometriosis: associations with menorrhagia, infertility and oral contraceptives. Int J Gynaecol Obstet 1980; 17: 573-576.
4. Wu MH, Shoji Y, Chuang PC, et al. Endometriosis: disease pathophysiology and the role of prostaglandins. Expert Rev Mol Med 2007; 9: 1-20.
5. Bulletti C, Coccia ME, Battistoni S, et al. Endometriosis and infertility. J Assist Reprod Genet 2010; 27: 441-447.
6. Guo SW. Recurrence of endometriosis and its control. Hum Reprod Update 2009; 15: 441-461.
7. Crosignani P, Olive D, Bergqvist A, et al. Advances in the management of endometriosis: an update for clinicians. Hum Reprod Update 2006; 12: 179-189.
8. Vercellini P, Vigano P, Somigliana E, et al. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 2014; 10: 261-275.
9. Simoens S, Hummelshoj L, D'Hooghe T. Endometriosis: cost estimates and methodological perspective. Hum Reprod Update 2007; 13: 395-404.
10. van der Linden PJ. Theories on the pathogenesis of endometriosis. Hum Reprod 1996; 11 Suppl 3: 53-65.
11. Sampson JA. Perforating hemorragic (chocolate) cysts of the ovary - Their importance and especially their relation to pelvic adenomas of endometrial type ("adenomyoma" of the uterus, rectovaginal septum, sigmoid etc). Arch Surg-Chicago 1921; 3: 245-323.
12. Levander G, Normann P. The pathogenesis of endometriosis; an experimental study. Acta Obstet Gynecol Scand 1955; 34: 366-398.
13. Halme J, Hammond MG, Hulka JF, et al. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984; 64: 151-154.
14. Giudice LC, Kao LC. Endometriosis. Lancet 2004; 364: 1789-1799.
15. Wu MH, Hsiao KY, Tsai SJ. Hypoxia: The force of endometriosis. J Obstet Gynaecol Res 2019; 45: 532-541.
16. Wu MH, Shoji Y, Wu MC, et al. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol 2005; 167: 1061-1069.
17. Chuang PC, Wu MH, Shoji Y, et al. Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. J Pathol 2009; 219: 232-241.
18. Wu MH, Lu CW, Chang FM, et al. Estrogen receptor expression affected by hypoxia inducible factor-1alpha in stromal cells from patients with endometriosis. Taiwan J Obstet Gynecol 2012; 51: 50-54.
19. Osuga Y. Current concepts of the pathogenesis of endometriosis. Reprod Med Biol 2010; 9: 1-7.
20. Nisolle M, Casanas-Roux F, Donnez J. Early-stage endometriosis: adhesion and growth of human menstrual endometrium in nude mice. Fertil Steril 2000; 74: 306-312.
21. Klemmt PAB, Carver JG, Koninckx P, et al. Endometrial cells from women with endometriosis have increased adhesion and proliferative capacity in response to extracellular matrix components: towards a mechanistic model for endometriosis progression. Human Reproduction 2007; 22: 3139-3147.
22. Delbandi AA, Mahmoudi M, Shervin A, et al. Eutopic and ectopic stromal cells from patients with endometriosis exhibit differential invasive, adhesive, and proliferative behavior. Fertil Steril 2013; 100: 761-769.
23. Aruffo A, Stamenkovic I, Melnick M, et al. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303-1313.
24. Lessan K, Aguiar DJ, Oegema T, et al. CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol 1999; 154: 1525-1537.
25. Gardner MJ, Catterall JB, Jones LMH, et al. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: A possible step in peritoneal metastasis. Clin Exp Metastas 1996; 14: 325-334.
26. Knudtson JF, Tekmal RR, Santos MT, et al. Impaired Development of Early Endometriotic Lesions in CD44 Knockout Mice. Reprod Sci 2016; 23: 87-91.
27. Muz B, de la Puente P, Azab F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015; 3: 83-92.
28. Hsiao KY, Lin SC, Wu MH, et al. Pathological functions of hypoxia in endometriosis. Front Biosci (Elite Ed) 2015; 7: 309-321.
29. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008; 15: 678-685.
30. Jiang BH, Rue E, Wang GL, et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271: 17771-17778.
31. Kaelin WG, Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393-402.
32. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40: 294-309.
33. Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2013; 132: 2721-2729.
34. Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 2013; 32: 4057-4063.
35. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 2013; 27: 41-53.
36. Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015; 309: C775-782.
37. Biju MP, Akai Y, Shrimanker N, et al. Protection of HIF-1-deficient primary renal tubular epithelial cells from hypoxia-induced cell death is glucose dependent. Am J Physiol-Renal 2005; 289: F1217-F1226.
38. Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164: 152-169.
39. Semenza GL, Wang GL. A Nuclear Factor Induced by Hypoxia Via Denovo Protein-Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Molecular and Cellular Biology 1992; 12: 5447-5454.
40. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72-82.
41. Gu YZ, Moran SM, Hogenesch JB, et al. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 7: 205-213.
42. Jain S, Maltepe E, Lu MM, et al. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 1998; 73: 117-123.
43. Rosenberger C, Mandriota S, Jurgensen JS, et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13: 1721-1732.
44. Wiesener MS, Jurgensen JS, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17: 271-273.
45. Yang SL, Wu C, Xiong ZF, et al. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review). Mol Med Rep 2015; 12: 2411-2416.
46. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464-468.
47. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468-472.
48. Hewitson KS, McNeill LA, Riordan MV, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. Journal of Biological Chemistry 2002; 277: 26351-26355.
49. Critchley HO, Osei J, Henderson TA, et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology 2006; 147: 744-753.
50. Wu MH, Chen KF, Lin SC, et al. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol 2007; 170: 590-598.
51. Lin SC, Wang CC, Wu MH, et al. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metab 2012; 97: E1515-1523.
52. Wu MH, Lin SC, Hsiao KY, et al. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 2011; 225: 390-400.
53. Lu Z, Zhang W, Jiang S, et al. Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice. Fertil Steril 2014; 101: 568-576.
54. Wu MH, Lu CW, Chuang PC, et al. Prostaglandin E2: the master of endometriosis? Exp Biol Med (Maywood) 2010; 235: 668-677.
55. Hsiao KY, Wu MH, Tsai SJ. Epigenetic regulation of the pathological process in endometriosis. Reprod Med Biol 2017; 16: 314-319.
56. Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis Cartilage 2012; 20: 339-349.
57. Jang HS, Shin WJ, Lee JE, et al. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel) 2017; 8.
58. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in endometriosis (Review). Mol Med Rep 2016; 13: 2939-2948.
59. Wu Y, Strawn E, Basir Z, et al. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 2006; 1: 106-111.
60. Noble LS, Simpson ER, Johns A, et al. Aromatase expression in endometriosis. J Clin Endocrinol Metab 1996; 81: 174-179.
61. Taylor HS, Bagot C, Kardana A, et al. HOX gene expression is altered in the endometrium of women with endometriosis. Human Reproduction 1999; 14: 1328-1331.
62. Xue Q, Lin ZH, Yin P, et al. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5 ' CpG island in endometriosis. J Clin Endocr Metab 2007; 92: 3261-3267.
63. Wu Y, Starzinski-Powitz A, Guo SW. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod Sci 2007; 14: 374-382.
64. Wu Y, Strawn E, Basir Z, et al. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril 2007; 87: 24-32.
65. Yamagata Y, Nishino K, Takaki E, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One 2014; 9: e83612.
66. Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression by microRNAs. Cell 2010; 140: 111-122.
67. Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2010; 16: 142-165.
68. Pan Q, Luo XP, Toloubeydokhti T, et al. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression (vol 13, pg 797, 2007). Molecular Human Reproduction 2014; 20: 1259-1259.
69. Dong XJ, Weng ZP. The correlation between histone modifications and gene expression. Epigenomics-Uk 2013; 5: 113-116.
70. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 2007; 13: 363-372.
71. Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20: 625-641.
72. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21: 381-395.
73. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 391-400.
74. Pogribny IP, Ross SA, Tryndyak VP, et al. Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 2006; 27: 1180-1186.
75. Tryndyak VP, Kovalchuk O, Pogribny IP. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 2006; 5: 65-70.
76. Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005; 435: 1262-1266.
77. Colon-Diaz M, Baez-Vega P, Garcia M, et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci 2012; 19: 483-492.
78. Monteiro JB, Colon-Diaz M, Garcia M, et al. Endometriosis Is Characterized by a Distinct Pattern of Histone 3 and Histone 4 Lysine Modifications. Reproductive Sciences 2014; 21: 305-318.
79. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev 2013; 27: 355-371.
80. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018; 173: 321-337 e310.
81. Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962-1971.
82. Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev 2007; 21: 2747-2761.
83. Liu CY, Zha ZY, Zhou X, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 2010; 285: 37159-37169.
84. Fu D, Lv X, Hua G, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer 2014; 21: 297-310.
85. Dhananjayan SC, Ramamoorthy S, Khan OY, et al. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Molecular Endocrinology 2006; 20: 2343-2354.
86. Song Y, Fu J, Zhou M, et al. Activated Hippo/Yes-Associated Protein Pathway Promotes Cell Proliferation and Anti-apoptosis in Endometrial Stromal Cells of Endometriosis. J Clin Endocrinol Metab 2016; 101: 1552-1561.
87. Lin SC, Lee HC, Hou PC, et al. Targeting hypoxia-mediated YAP1 nuclear translocation ameliorates pathogenesis of endometriosis without compromising maternal fertility. J Pathol 2017; 242: 476-487.
88. Wing LY, Chuang PC, Wu MH, et al. Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of estrogen. J Clin Endocrinol Metab 2003; 88: 5547-5554.
89. Laschke MW, Elitzsch A, Scheuer C, et al. Selective cyclo-oxygenase-2 inhibition induces regression of autologous endometrial grafts by down-regulation of vascular endothelial growth factor-mediated angiogenesis and stimulation of caspase-3-dependent apoptosis. Fertil Steril 2007; 87: 163-171.
90. Bell SE, Mavila A, Salazar R, et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 2001; 114: 2755-2773.
91. Scobie HM, Rainey GJA, Bradley KA, et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. P Natl Acad Sci USA 2003; 100: 5170-5174.
92. Dowling O, Difeo A, Ramirez MC, et al. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet 2003; 73: 957-966.
93. Hanks S, Adams S, Douglas J, et al. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet 2003; 73: 791-800.
94. Burgi J, Kunz B, Abrami L, et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat Commun 2017; 8: 15861.
95. Liu SL, Crown D, Miller-Randolph S, et al. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. P Natl Acad Sci USA 2009; 106: 12424-12429.
96. Lin SC, Lee HC, Hsu CT, et al. Targeting Anthrax Toxin Receptor 2 Ameliorates Endometriosis Progression. Theranostics 2019; 9: 620-632.
97. Xu Y, He Y, Xu W, et al. Promotive effects of capillary morphogenetic protein 2 on glioma cell invasion and the molecular mechanism. Folia Neuropathol 2019; 57: 6-15.
98. Kay BK, Williamson MP, Sudol P. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Faseb Journal 2000; 14: 231-241.
99. Vargas RE, Duong VT, Han H, et al. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39: e102406.
100. Regidor PA, Vogel C, Regidor M, et al. Expression pattern of integrin adhesion molecules in endometriosis and human endometrium. Hum Reprod Update 1998; 4: 710-718.
101. Khorram O, Lessey BA. Alterations in expression of endometrial endothelial nitric oxide synthase and alpha(v)beta(3) integrin in women with endometriosis. Fertil Steril 2002; 78: 860-864.
102. Luo X, Li Z, Li X, et al. hSav1 interacts with HAX1 and attenuates its anti-apoptotic effects in MCF-7 breast cancer cells. Int J Mol Med 2011; 28: 349-355.
103. Wang L, Wang Y, Li PP, et al. Expression profile and prognostic value of SAV1 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2016.
104. Jiang J, Chang W, Fu Y, et al. SAV1, regulated by microRNA-21, suppresses tumor growth in colorectal cancer. Biochem Cell Biol 2019; 97: 91-99.
105. Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. Febs J 2006; 273: 4264-4276.
106. Park BH, Lee YH. Phosphorylation of SAV1 by mammalian ste20-like kinase promotes cell death. BMB Rep 2011; 44: 584-589.
校內:2026-08-10公開