| 研究生: |
蔡慶萱 Tsai, Ching-Hsuan |
|---|---|
| 論文名稱: |
基於提升機制的小波轉換影像插補法 Wavelet-Based Image Interpolation in Lifting Structure |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 影像壓縮 、影像插補 、小波轉換 、整數小波轉換 、多項式迴歸 |
| 外文關鍵詞: | Image compression, image interpolation, wavelet transform, integer wavelet transform, polynomial curve fitting |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一種基於小波提升機制的影像插補法,並使用多項式迴歸以進一步提升影像插補的品質。基於離散小波轉換後的低頻係數,此篇論文提出預測型的演算法,以預測原始影像經整數小波轉換後的高頻係數,得以將小波轉換後的低頻影像重建為原始影像,以達到影像插補的目的。為了進一步改進重建影像的品質,本研究更使用多項式迴歸建立真實小波高頻係數和預測小波高頻係數間的線性關係,並運用此線性關係得到更好的預測結果。經由實驗結果顯示,本篇論文提出的使用多項式迴歸的預測型演算法表現比其他文獻所呈現的方法更有效率。
A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this thesis. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.
[1] T.M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Trans. Med. Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.
[2] R.G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 6, pp. 1153–1160, 1981.
[3] S.M. Guo, C.Y. Hsu, G.C. Shih, and C.W. Chen, “Fast pixel-size-based large-scale enlargement and reduction of image: adaptive combination of bilinear interpolation and discrete cosine transform,” Journal of Electronic Imaging, vol. 20, no. 3, pp. 033005, 2011.
[4] W.K. Carey, D.B. Chuang, and S.S. Hemami, “Regularity-preserving image interpolation,” IEEE Trans. Image Process., vol. 8, no. 9, pp. 1293–1297, 1999.
[5] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement,” IEE Proc. Vis. Image Signal Process., vol. 153, no. 1, pp. 25–30, 2006.
[6] Y. Piao, I.H. Shin, and H.W. Park, “Image resolution enhancement using inter-subband correlation in wavelet domain,” in Proc. ICIP, vol. 1, pp. 445–448, 2007.
[7] K. Kinebuchi, D.D. Muresan, and T.W. Parks, “Image interpolation using wavelet-based hidden Markov trees,” in IEEE Proc. ICASSP, vol. 3, pp. 1957–1960, 2001.
[8] A. Temizel, “Image resolution enhancement using wavelet domain hidden Markov tree and coefficient sign estimation,” in Proc. ICIP, vol. 5, pp. 381–384.
[9] S.S. Kim, Y.S. Kim, and I.K. Eom, “Image interpolation using MLP neural network with phase compensation of wavelet coefficients,” Neural Comput. Appl., vol. 18, no. 8, pp. 967–977, 2009.
[10] W.L. Lee, C.C. Yang, H.T. Wu, and M.J. Chen, “Wavelet-based interpolation scheme for resolution enhancement of medical images,” J. Signal Process. Syst., vol. 55, no. 1-3, pp. 251–265, 2009.
[11] S.M. Guo, B.W. Lai, Y.C. Chou, and C.C. Yang, “Novel wavelet-based image interpolations in lifting structures for image resolution enhancement,” Journal of Electronic Imaging, vol. 20, no. 3, pp.033007, 2011
[12] H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 1997–2004, 2011
[13] H. Chavez-Roman, V. Ponomaryov, and R. Peralta-Fabi, “Image super resolution using interpolation and edge extraction in wavelet transform space,” International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6, 2012.
[14] M.Z. Iqbal, A.Ghafoor, A.M. Siddiqui, “Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 3, pp.451-455, 2013.
[15] H. Demirel and G. Anbarjafari, “IMAGE Resolution Enhancement by Using Discrete and Stationary Wavelet Decomposition,” IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 20, no. 5, 2011.
[16] M.S.Divya Lakshmi, “Robust Satellite Image Resolution Enhancement Based On Interpolation Of Stationary Wavelet Transform,” International Journal of Scientific & Engineering Research, vol. 4, no. 6, 2013.
[17] R.C. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, “Wavelet transforms that map integers to integers,” J. Appl. Comput. Harmon. Anal., vol. 5, no. 3, pp. 332–369, 1998.
[18] A. Bilgin, G. Zweig, and M.W. Marcellin, “Three-dimensional image compression with integer wavelet transforms,” Appl. Opt., vol. 39, no. 11, pp.1799–1814, 2000.
[19] Z. Xiong, X. Wu, S. Cheng, and J. Hua, “Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms,” IEEE Transactions on Medical Imaging, vol. 22, pp. 459–470, 2003.
[20] S.G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, 1989.
[21] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 247–269, 1998.
[22] Test images, http://sipi.usc.edu/database/.
校內:2024-12-31公開