簡易檢索 / 詳目顯示

研究生: 鄧喬方
Teng, Chiao-Fang
論文名稱: 運用核糖核酸干擾技術探討細胞核定位訊號
Molecular Studies of Nuclear Localization Signal by RNA Interference
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 272
中文關鍵詞: 細胞核運送因子核糖核酸干擾技術細胞核定位訊號
外文關鍵詞: Nuclear Transport Factor, RNA Interference, Nuclear Localization Signal
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瞭解細胞核運送的分子機制以及細胞如何藉由細胞核質間運送的方式調控蛋白質的活性,將能提供我們對於一些疾病有更進一步的認知。細胞中大分子物質的進出細胞核通常被其本身所帶有的標的訊號所控制,且此標的訊號受一群專一的入核與出核的運送因子所辨識。幾個不同種類的細胞核定位訊號,包刮來自於SV40 large T-antigen,nucleoplasmin,hnRNP A1以及p53,幫助許多蛋白質運送入細胞核中。核糖核酸干擾術具有極大的潛力做為一個實驗上的工具,提供生物性的發現、分析與治療。在本研究中,我們即試圖利用RNA干擾術這個技術來探討細胞核定位訊號與細胞核運送因子間的關係。目前,我們已針對SV40 large T-antigen,nucleoplasmin,hnRNP A1以及p53四個蛋白質,建構其細胞核定位訊號與單一的綠色螢光蛋白,兩個綠色螢光蛋白,和兩個綠色螢光蛋白以及glutathione S-transferase(GST)的融合表現載體。同時,我們也針對幾個主要的細胞核運送因子,包刮六個人類的importin alpha (1,3,4,5,6,7),三個importin beta (1,2,3)以及Ran,篩選了有效的siRNA和shRNA。藉由共同轉染細胞核定位訊號的表現載體與針對細胞核運送因子的shRNA,我們發現針對importin beta和Ran的shRNA相較於importin alpha,對於細胞核定位訊號的入核效力具有較大的影響。特別的是,我們很驚訝地發現針對importin beta 1和Ran的shRNA對於p53的細胞核定位訊號的入核效力具有非常顯著的影響。重要的是,這個發現不只可進一步地藉由共同轉染p53基因的表現載體與這些shRNA觀察到,也可利用免疫螢光染色法於內生性的p53上得到一致性的結果。在另一個研究中,我們將幾個針對細胞生存基因的shRNA進行組合,包刮Bcl-2,survivin,Akt1,Erk2,cyclinE,NFκB,發現即使組合至六個shRNA之多,也不會影響組合中的各個單一的shRNA對其標的基因的抑制能力。甚至,當我們進一步地將這些shRNA轉染入HeLa細胞中,我們有趣地觀察到他們能誘發不同程度的細胞計畫性死亡。由於一種細胞核定位訊號通常藉由不只一種細胞核運送因子的幫助進入細胞核中,所以我們試圖利用此套shRNA的組合表現載體將針對細胞核運送因子的shRNA進行組合,使我們能利用各種針對細胞核運送因子的組合shRNA進一步更深入地探討細胞核運送的分子機制。目前,我們已針對三個importin beta (1,2,3)以及Ran成功地建構了各種可能的shRNA組合表現載體,提供我們在未來能進一步地探討細胞核運送的分子機制。

    Understanding the molecular basis of nuclear transport may provide insight into human diseases by revealing how nucleocytoplasmic trafficking regulates protein activity. Transport of macromolecules into and out of the nucleus is generally controlled by targeting signals that are recognized by specific members of the importin/exportin transport receptor family. Several distinct types of nuclear localization signals (NLSs), from SV40 large T-antigen, nucleoplasmin, hnRNP A1, and p53, mediate passage of cargo proteins into the nucleus. RNA interference (RNAi) has shown great potential for use as a tool for biological discovery, analysis and therapeutics. In this study, we try to dissect the relationship between NLSs and nuclear transport receptors by using RNAi-based techniques. Until now, we have established the expression vectors of NLSs, including SV40 large T-antigen, nucleoplasmin, hnRNP A1, and p53, fused with one or two copies of enhanced green fluorescent protein (EGFP; EGFP2), or two copies EGFP plus glutathione S-transferase (EGFP2-GST). Simultaneously, we have screened the effective siRNAs/shRNAs against nuclear transport receptors, including human importin alpha (1,3,4,5,6,7), beta (1,2,3) family and Ran. By
    co-transfection of those NLS-expression vectors and shRNAs against nuclear transport receptors, we found that the shRNAs against importin beta family and Ran contrast to alpha have larger effect on the efficacy of NLS-mediated nuclear import. In particular, we were surprised to find that shRNAs against importin beta 1 and Ran individually have most dramatic effect on the efficacy of p53-NLS1-mediated nuclear import. Importantly, this result could be further observed not only by co-transfection of p53 gene-expression vector and these shRNAs but also on the endogenous level by using immunofluorescence staining. In another study, we used several shRNAs against cell survival genes, including Bcl-2, survivin, Akt1, Erk2, cyclinE, NFκB for combination and found that the combination of at most six shRNAs would not affect their silencing efficiency. Furthermore, when these shRNA-expression vectors were transfected into HeLa cell line, we interestingly observed that these shRNAs would induce different level of apoptosis. Because each type of NLS was recognized more than one type of nuclear transport receptors, this combination RNAi expression system was used to further analyze the nuclear localization mechanism by combining those shRNAs against nuclear transport receptors. Until now, we have established all possible types of combination expression vectors from those shRNAs against
    importin beta family and Ran, and these shRNA combination expression vectors can provide further analysis for nuclear transport mechanism in the future.

    中文摘要-----------------------------------------------------------------------I 英文摘要---------------------------------------------------------------------III 誌謝---------------------------------------------------------------------------V 目錄--------------------------------------------------------------------------VI 表目錄------------------------------------------------------------------------IX 圖目錄-------------------------------------------------------------------------X 第一章 緒論 A. 細胞核運送------------------------------------------------------------------1 B. 細胞核運送機制--------------------------------------------------------------1 C. 細胞核定位訊號--------------------------------------------------------------2 D. 細胞核運送因子--------------------------------------------------------------4 E. 細胞核運送與疾病------------------------------------------------------------5 F. 核糖核酸干擾現象------------------------------------------------------------6 G. 核糖核酸干擾術的機制--------------------------------------------------------7 H. 以DNA質體表現siRNAs---------------------------------------------------------9 I. RNAi技術的應用以及發展潛力-------------------------------------------------11 第二章 材料方法 A. 實驗材料 A-1 勝任細胞菌株-------------------------------------------------------------13 A-2 限制酶-------------------------------------------------------------------13 A-3 化學藥品-----------------------------------------------------------------13 A-4 試劑---------------------------------------------------------------------15 A-5 抗體---------------------------------------------------------------------15 A-6 培養液-------------------------------------------------------------------16 A-7 細菌用的培養基-----------------------------------------------------------17 A-8 緩衝液-------------------------------------------------------------------18 A-9 各種試劑配製-------------------------------------------------------------23 A-10 勝任細胞製備------------------------------------------------------------23 A-11 儀器設備----------------------------------------------------------------24 A-12 廠商網址----------------------------------------------------------------25 B. 方法 B-1 細胞的培養程序-----------------------------------------------------------27 B-2 基本分子生物技術---------------------------------------------------------28 B-3 細胞株的相關實驗---------------------------------------------------------36 B-4 實驗質體的構築方法-------------------------------------------------------42 第三章 實驗結果 建構細胞核定位訊號的表現載體------------------------------------------------75 針對細胞核運送因子篩選有效的siRNA-------------------------------------------79 探討細胞核定位訊號與細胞核運送因子間的關係----------------------------------80 比較p53基因的三個細胞核定位訊號的入核效力-----------------------------------84 評估各個針對細胞生存基因的shRNA對其內生性的標的基因的抑制能 力--------------------------------------------------------------------------86 評估各個針對細胞生存基因的組合shRNA對其內生性的標的基因的抑 制能力----------------------------------------------------------------------87 評估同時針對所有細胞生存基因的組合shRNA於轉染後不同時間以及以不同劑量轉染下對 其內生性的標的基因的抑制能力------------------------------------------------87 觀察各種針對細胞生存基因的shRNA對細胞生長的影響-----------------------------88 建構各種針對importinβ以及Ran的shRNA組合表現載體----------------------------89 第四章 討論-------------------------------------------------------------------90 第五章 參考文獻---------------------------------------------------------------94 第六章 實驗附表--------------------------------------------------------------104 第七章 實驗附圖--------------------------------------------------------------110 附圖-------------------------------------------------------------------------255 作者自述---------------------------------------------------------------------257

    Agutter, P. S. and Prochnow, D. Nucleocytoplasmic transport. Biochem J. 300,
    609-618 (1994).
    Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. Role for a
    bidentate ribonuclease in the initiation step of RNA interference. Nature 409,
    363-366 (2001).
    Black, B. E. and Paschal, B. M. Intranuclear organization and function of the
    androgen receptor. Trends Endocrinol Metab. 15, 411-417 (2004).
    Brummelkamp, T. R., Bernards, R. and Agami, R. Stable suppression of
    tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243-247
    (2002).
    Brummelkamp, T. R., Bernards, R. and Agami, R. A system for stable expression
    of short interfering RNAs in mammalian cells. Science 296, 550-553 (2002).
    Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C. and Wheatley, S. P.
    Survivin is required for stable checkpoint activation in taxol-treated HeLa
    cells. J Cell Sci 116, 2987-2998 (2003).
    Chiu, Y. L. and Rana, T. M. siRNA function in RNAi: a chemical modification
    analysis. RNA 9, 1034-1048 (2003).
    Coburn, G. A. and Cullen, B. R. Potent and specific inhibition of human
    immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76,
    9225-9231 (2002).
    Conti, E. and Kuriyan, J. Crystallographic analysis of the specific yet
    versatile recognition of distinct nuclear localization signals by karyopherin
    alpha. Structure Fold Des. 8, 329-338 (2000).
    Conti, E. and Izaurralde, E. Nucleocytoplasmic transport enters the atomic age.
    Curr Opin Cell Biol 13, 310-319 (2001).
    Conti, E., Uy, M., Leighton, L., Blobel, G. and Kuriyan, J. Crystallographic
    analysis of the recognition of a nuclear localization signal by the nuclear
    import factor karyopherin. Cell 94, 193-204 (1998).
    Cowie, A., de Villiers, J. and Kamen, R. Immortalization of rat embryo
    fibroblasts by mutant polyomavirus large T antigens deficient in DNA binding.
    Mol Cell Biol 6, 4344-4352 (1986).
    Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. Killing the messenger: short
    RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457-467 (2003).
    Efthymiadis, A., Shao, H., Hübner, S., Jans, D. A. Kinetic characterization of
    the human retinoblastoma protein bipartite nuclear localization sequence (NLS)
    in vivo and in vitro. A comparison with the SV40 large T-antigen NLS. J Biol
    Chem. 272, 22134-22139 (1997).
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl,
    T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured
    mammalian cells. Nature 411, 494-498 (2001).
    Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. and Tuschl, T.
    Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila
    melanogaster embryo lysate. EMBO J. 20, 6877-6888 (2001).
    Filleur, S., Courtin, A., Ait-Si-Ali, S., Guqlielmi, J., Merie, C., Harel-
    Bellan, A., Clezardin, P. and Cabon, F. siRNA-mediated inhibition of vascular
    endothelia growth factor severely limits tumor resistance to antiangiogenic
    thrombospondin-1 and shows tumor vascularization and growth. Cancer Res. 63,
    3919-3922 (2003).
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., Mello, C. C.
    Potent and specific genetic interference by double-stranded RNA in
    Caenorhabditis elegans. Nature 391, 806-811 (1998).
    Gioeli, D., Mandell, J. W., Petroni, G. R., Frierson, H. F. Jr and Weber, M. J.
    Activationof mitogen-activated protein kinase associated with prostate cancer
    progression. Cancer Res. 59, 279-284 (1999).
    Guo, J., Verma, U. N., Gaynor, R. B., Frenkel, E. P. and Becerra, C. R.
    Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-
    regulation of the nuclear factor-kappaB p65 subunit. Clin Cancer Res. 10, 3333-
    3341 (2004).
    Guo, S. and Kemphues, K. J. par-1, a gene required for establishing polarity in
    C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically
    distributed. Cell 81, 611-620 (1995).
    Hall, J. Opinion: Unravelling the general properties of siRNAs: strength in
    numbers and lessons from the past. Nat. Rev. Genet. 5, 552-557 (2004).
    Hall, M. N., Craik, C. and Hiraoka, Y. Homeodomain of yeast repressor alpha 2
    contains a nuclear localization signal. Proc. Natl. Acad. Sci. U S A. 87, 6954-
    6958 (1990).
    Hall, M. N., Hereford, L., Herskowitz, I. Targeting of E. coli beta-
    galactosidase to the nucleus in yeast. Cell 36, 1057-1065 (1984).
    Hamilton, A. J.¬ and Baulcombe, D. C¬. A species of small antisense RNA in
    posttranscriptional gene silencing in plants. Science 286, 950-952 (1999).
    Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. An RNA-directed
    nuclease mediates post-transcriptional gene silencing in Drosophila cells.
    Nature 404, 293-296 (2000).
    Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. and Hannon, G. J.
    Argonaute2, a link between genetic and biochemical analyses of RNAi. Science
    293,1146-1150 (2001).
    Hannon, G. J. and Rossi, J. J. Unlocking the potential of the human genome with
    RNA interference. Nature 431, 371-378 (2004).
    Henderson, B. R. and Percipalle, G. Interactions between HIV Rev and nuclear
    import and export factors: the Rev nuclear localization signal mediates
    specific binding to human importin-beta. J Mol Biol. 274, 693-707 (1997).
    Hübner, S., Xiao, C. Y. and Jans, D. A. The protein kinase CK2 site
    (ser111/112) enhances recognition of the simian virus 40 large T-antigen
    nuclear localization sequence by importin. J Biol Chem. 272, 17191-17195
    (1997).
    Hung, C. F., Lu, K. C., Cheng, T. L., Wu, R. H, Huang, L. Y., Teng, C. F. and
    Chang, W. C. A novel siRNA validation system for functional screening and
    identification of effective RNAi probes in mammalian cells. Biochem. Biophys.
    Res. Commun. 346, 707-720 (2006).
    Jacque, J. M., Triques, K. and Stevenson, M. Modulation of HIV-1 replication by
    RNA interference. Nature 418, 435-438 (2002).
    Jiang, M. and Milner, J. Bcl-2 constitutively suppresses p53-dependent
    apoptosis in colorectal cancer cells. Genes Dev. 17, 832-837 (2003).
    Kalderon, D., Richardson, W. D., Markham, A. F. and Smith, A. E. Sequence
    requirements for nuclear localization of simian virus 40 large-T antigen.
    Nature 311, 33-38 (1984).
    Kalderon, D., Roberts, B. L., Richardson, W. D. and Smith, A. E. A short amino
    acid sequence able to specify nuclear localization. Cell 39, 499-509 (1984).
    Katome, T., Obata, T., Matsushima, R., Masuvama, N., Cantley, L. C., Gotoh, Y.,
    Kishi, K., Shiota, H. and Ebina, Y. Use of RNA interference-mediated gene
    siencing and adenoviral overexpression to elucidate the roles of AKT/protein
    kinase B isoforms in insulin actions. J Biol Chem 278, 28312-28323 (2003).
    Karagiannis, T. C. and El-Osta, A. RNA interference and potential therapeutic
    applications of short interfering RNAs. Cancer Gene Ther. (2005).
    Kennerdell, J. R. and Carthew, R. W. Heritable gene silencing in Drosophila
    using double-stranded RNA. Nat. Biotechnol. 18, 896-898 (2000).
    Kleinschmidt, J. A. and Seiter, A. Identification of domains involved in
    nuclear uptake and histone binding of protein N1 of Xenopus laevis. EMBO J. 7,
    1605-1614 (1988).
    Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by
    the crystal structure of mammalian importin . Nature Struct Biol. 6, 388-397
    (1999).
    Komeili, A. and O’Shea, E. K. New perspectives on nuclear transport. Annu Rev
    Genet. 35, 341-364 (2005).
    Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. and Görlich, D. Export of
    importin from the nucleus is mediated by a specific nuclear transport
    factor. Cell 90, 1061-1071 (1997).
    Lam, M. H. C., Briggs, L. J., Hu, W., Martin, T. J., Gillespie, M. T. and Jans
    D. A. Importin  recognizes parathyroid hormone-related protein (PTHrP) with
    high affinity and mediates its nuclear import in the absence of importin.
    J Biol Chem. 274, 7391-7398 (1999).
    Lanford, R. E. and Butel, J. S. Construction and characterization of an SV40
    mutant defective in nuclear transport of T antigen. Cell 37, 801-813 (1984).
    Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra,
    P. and Rossi, J. Expression of small interfering RNAs targeted against HIV-1
    rev transcripts in human cells. Nat. Biotech. 20, 500-505 (2002).
    Liang, S. H. and Clarke, M. F. The nuclear import of p53 is determined by the
    presence of a basic domain and its relative position to the nuclear
    localization signal. Oncogene. 18, 2163-2166 (1999).
    Liu, X., Yan, S., Zhou, T., Terada, Y. and Erikson, R. L. The MAP kinase
    pathway is required for entry into mitosis and cell survival. Oncogene. 23,
    763-776 (2004).
    Lyons, R. H., Ferguson, B. Q. and Rosenberg, M. Pentapeptide nuclear
    localization signal in adenovirus E1a. Mol Cell Biol 7, 2451-2456 (1987).
    Makkerh, J. P. S., Dingwall, C. and Laskey, R. A. Comparative mutagenesis of
    nuclear localization signals reveals the importance of neutral and acidic
    amino acids. Curr Biol. 6, 1025-1027 (1996).
    Matsukura, S., Jones, P. A., and Takai, D. Establishment of conditional vectors
    for hairpin siRNA knockdowns. Nucleic Acid Res. 31, e77 (2003).
    Miyagishi, M. and Taira, K. U6 promoter-driven siRNAs with four uridine 3'
    overhangs efficiently suppress targeted gene expression in mammalian cells.
    Nat. Biotechnol. 20, 497-500 (2002).
    Napoli, C., Lemieux, C. and Jorgensen, R. Introduction of a chimeric chalcone
    synthase gene into petunia results in reversible co-suppression of homologous
    genes in trans. Plant Cell 2, 279-289 (1990).
    Nigg, E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation.
    Nature 386, 779-787 (1997).
    Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J.,
    Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P. and Sharp, P. A. siRNA-
    directed inhibition of HIV-1 infection. Nat. Med. 8, 681-686 (2002).
    Paddison, P. J., Caudy, A. A. and Hannon, G. J. Stable suppression of gene
    expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U S A. 99, 1443-
    1448 (2002).
    Paddison, P. J., Caudy, A. A, Bernstein, E., Hannon, G. J. and Conklin, D. S.
    Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian
    cells. Genes Dev. 16, 948-958 (2002).
    Palmeri, D. and Malim, M. H. Importin  can mediate the nuclear import of an
    arginine-rich nuclear localization signal in the absence of importin . Mol
    Cell Biol. 19, 1218-1225 (1999).Paul, C. P., Good, P. D., Winer, I. and
    Engelke, D. R. Effective expression of small interfering RNA in human cells.
    Nat. Biotechnol. 20, 505-508 (2002).
    Park, W. S., Miyano-Kurosaki, N., Hayafune, M., Nakajima, E., Matsuzaki, T.,
    Shimada, F. and Takaku, H. Prevention of HIV-1 infection in human peripheral
    blood mononuclear cells by specific RNA interference. Nucleic Acids Res. 30,
    4830-4835 (2002).
    Pemberton, L. F. and Paschal, B. M. Mechanisms of receptor-mediated nuclear
    import and import export. Traffic. 6, 187-198 (2005).
    Quensel, C., Friedrich, B., Sommer, T., Hartmann, E. and Kohler, M. In vivo
    analysis of importin  proteins reveals cellular proliferation inhibition and
    substrate specificity. Mol. Cell. Biol. 24, 10246-10255 (2004).
    Robbins, J., Dilworth, S. M., Laskey, R. A., Dingwall, C. Two interdependent
    basic domains in nucleoplasmin nuclear targeting sequence: identification of a
    class of bipartite nuclear targeting sequence. Cell 64, 615-623 (1991).
    Romano, N. and Macino, G. Quelling: transient inactivation of gene expression
    in Neurospora crassa by transformation with homologous sequences. Mol
    Microbiol 6, 3343-3353 (1992).
    Shaulsky, G., Goldfinger, N., Ben-Ze’ev, A., and Rotter, V. Nuclear
    accumulation of p53 protein is mediated by several nuclear localization
    signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10, 6565-6577
    (1990).
    Shuey, D. J., McCallus, D. E., and Giordano, T. RNAi:gene-silencing in the
    therapeutic intervention. DDT. 7, 1040-1046 (2002).
    Siolas, D., Lerner, C., Burchard, J., Ge, W., Linsley, P. S., Paddison, P. J.,
    Hannon, G. J. and Cleary, M. A. Synthetic shRNAs as potent RNAi triggers. Nat.
    Biotechnol. 23, 227-231 (2005).
    Siomi, H. and Dreyfuss, G. A nuclear domain in the hnRNP A1 protein. J Cell
    Biol. 129, 551-560 (1995).
    Song, E., Lee, S. K., Dykxhoorn, D. M., Novina, C., Zhang, D., Crawford, K.,
    Cerny, J., Sharp, P. A., Lieberman, J., Manjunath, N. and Shankar, P.
    Sustained small interfering RNA-mediated human immunodeficiency virus type 1
    inhibition in primary macrophages. J. Virol. 77, 7174-7181 (2003).
    Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J.,
    Shankar, P. and Lieberman, J. RNA interference targeting Fas protects mice
    from fulminant hepatitis. Nat. Med. 9, 347-351 (2003).
    Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M.,
    Feng, Y., Palliser, D., Weiner, D. B., Shankar, P., Marasco, W. A. and
    Lieberman, J. Antibody mediated in vivo delivery of small interfering RNAs via
    cell-surface receptors. Nat. Biotechnol. 23, 709-717 (2005).
    Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber, R.
    D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227-264 (1998).
    Stochaj, U. and Silver, P. Nucleocytoplasmic traffic of proteins. Eur J Cell
    Biol. 59, 1-11 (1992).
    Sui, G., Soohoo, C., Affar, el B., Gay, F., Shi, Y., Forrester, WC. and Shi, Y.
    A DNA vector-based RNAi technology to suppress gene expression in mammalian
    cells. Proc. Natl. Acad. Sci. U S A. 99, 5515-5520 (2002).
    Surabhi, R. M. and Gaynor, R. B. RNA interference directed against viral and
    cellular targets inhibits human immunodeficiency Virus Type 1 replication. J.
    Virol. 76, 12963-12973 (2002).
    Svoboda, P., Stein, P. and Schultz, R. M. RNAi in mouse oocytes and
    preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys.
    Res. Commun. 287, 1099-1104 (2001).
    Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. and Driscoll, M.
    Heritable and inducible genetic interference by double-stranded RNA encoded by
    transgenes. Nat. Genet. 24, 180-183 (2000).
    Tiganis, T., Flint, A. J., Adam, S. A. and Tonks, N. K. Association of the T-
    cell protein tyrosine phosphatase with nuclear import factor p97. J Biol Chem.
    272, 21548-21557 (1997).
    Tuschl, T.¬, Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A.
    Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191-
    3197 (1999).
    Varagona, M. J. and Raikhel, N. V. The basic domain in the bZIP regulatory
    protein Opaque2 serves two independent functions: DNA binding and nuclear
    localization. Plant J. 5, 207-214 (1994).
    Wu, M. T., Wu, R. H., Hung, C. F., Cheng, T. L., Tsai, W. H. and Chang, W. T.
    Simple and efficient DNA vector-based RNAi systems in mammalian cells.
    Biochem. Biophys. Res. Commun. 330, 53-59 (2005).
    Yoneda, Y., Hieda, M., Nagoshi, E. and Miyamoto, Y. Nucleocytoplasmic protein
    transport and recycling of Ran. Cell Struct Funct. 24, 425-433 (1999).
    Yu, J. Y., DeRuiter, S. L. and Turner, D. L. RNA interference by expression of
    short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad.
    Sci. U S A. 99, 6047-6052 (2002).
    Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. RNAi: double-stranded
    RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide
    intervals. Cell 101, 25-33 (2000).
    Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, Waltemathe M,
    Gosling T, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S.
    Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc.
    Natl. Acad. Sci. U S A. 100, 7797-7802 (2003).
    Zhang, L., Johnson, M., Le, K. H., Sato, M., Ilagan, R., Iyer, M., Gambhir, S.
    S., Wu, L., Carey, M. Iterrogating androgen receptor function in recurrent
    prostate cancer. Cancer Res. 63, 4552-4560 (2003).
    Zheng, L., Liu, J., Batalov, S., Zhou, D., Orth, A., Ding S. and Schultz, P. G.
    An approach to genomewide screens of expressed small interfering RNAs in
    mammalian cells. Proc. Natl. Acad. Sci. U S A. 101, 135-140 (2004).

    下載圖示 校內:2009-08-18公開
    校外:2009-08-18公開
    QR CODE