簡易檢索 / 詳目顯示

研究生: 劉鈞皓
Liu, Jun-Hao
論文名稱: 橋樑支承墊阻尼對高鐵行車震動之影響分析
Investigation of Bridge Vibration due to the Damping Ratio Variation in Bearing Plate under High-speed-train Loading
指導教授: 朱聖浩
Zhu, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 102
中文關鍵詞: 三維網格共振橡膠支承墊有限元素法高架橋振動阻尼比鉛心橡膠支承墊高速鐵路AN 程式
外文關鍵詞: Damping ratio, AN program, FEM, rubber-bearing plate, LRB, High speed train, Resonance, Three-dimensional mesh, Viaduct vibration
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高架橋樑系統成為高速鐵路土建結構的主要選擇,因此,近年來探討列車行經橋樑時造成動力的行為是個相當重要的題材。一般來說,地震力作用之下適當阻尼比的支承墊可以明顯的減少橋樑的振動,然而,在微震的情況之下是否也會一樣。另外,對於使用樑元素分析橋樑振動,並探討樑元素與三維元素結果比較的差異性。
    本文的主要目的是以有限元素法探討以上所提到的兩個問題。首先,探討當高速列車經過時不同的支承墊阻尼比下的振動位移,結果指出在不同支承墊阻尼比的情況下並不會非常明顯。接著,探討三維樑元素與支承墊情況下的差異,比較結果指出軌道的勁度與支承墊上的摩擦力應該大致上與樑元素模型相同。假使忽略了這兩個影響,兩
    者的差異就會非常的大。因此,對於樑元素來說,兩簡支樑之間的勁度假設與支承墊是非常重要的。

    The viaduct system has become the main choice for high-speed railways. Thus, investigating the dynamic behavior of bridges caused by the passing vehicles or trains has been an important subject of research recently. Usually, bearing plates with a suitable damping ratio can considerably reduce bridge vibration due to seismic loading. However, it should be a question that the above condition is still valid for micro vibration. To analyze bridge vibration, people usually use beam element to model the bridge for simplification. This, therefore, causes another question what is the analysis difference between the simplified beam model and the precise three-dimensional solid model.
    The main purpose of this thesis is to investigate the above two questions using the finite element method. First, the vibration displacement of the bridge for different damping ratios in the bearing plates is investigated during the high-speed train loading. The results indicate that the change of the damping ratio of the bearing plate is not obvious. Second, the bridge was analyzed using the beam model that simulates the bridge using three-dimensional beam elements. The analysis difference between the beam models and three-dimensional solid models was discussed. The comparison indicates that the stiffness of the rail and the friction on the bearing plate should be appropriately modeled for the beam model. If one ignores the two effects that mean the model without rail stiffness and bearing plate friction, the difference can be considerably large for the two models. At this condition, the shear forceof the pier increases significantly in the bridge direction using the beam model. Thus, suitable assumptions between two simply supported beams and bearing plates are very important for the beam model.

    ABSTRACT I 摘要 III 誌謝 IV CONTENTS V LIST OF TABLES Ⅷ LIST OF FIGURES IX CHAPTER 1. INTRODUCTION 1 1.1 Background and purpose of the research 1 1.2 Literature review 2 1.3 Brief account of the research 4 1.4 Illustrate of the finite element program 5 CHAPTER 2. NUMERICAL THEORY USED IN THE THESIS 11 2.1 Absorbing boundary 11 2.2 Wheel element 12 2.3 Newmark direct integration method 15 2.4 Calculation of 1/3 octave band from the finite element result 17 2.5 Illustration of bridge system 19 CHAPTER 3. MESH GENERATION PROGRAM OF THE MODEL 26 3.1 Mesh generation program MRTSBOX 26 3.1.1 Input data of program MRTSBOX 27 3.1.2 Example 28 3.1.3 Illustration of the mesh generation program MRTSBOX 29 3.1.4 The required file to execute program MRTSBOX 33 3.2 The program Gbdall9 32 3.2.1 Summarized account of program Gbdall9 34 3.2.2 Element classification 34 3.2.3 Input data of program Gbdall9 37 3.2.4 Example for beam section 39 3.3 Calculate vibration velocity with program DB 39 CHAPTER 4. THE DISPLACEMENT ANALYSIS OF BRIDGE UNDER DIFFERENT DAMPING RATIO 49 4.1 The brief introduction of the bearing plate 49 4.1.1 The material characteristic of rubber bearing plate 49 4.1.2 Concerning the lead-rubber bearing plate 50 4.2 Compare the displacement under the different damping ratios 51 4.2.1 The program MMM 51 4.2.2 Compare the displacement of node under the different damping ratios 52 4.2.3 The displacement of the nodes under different damping ratios 52 4.2.4 Analysis results of LRB 53 4.2.5 Analysis results of rubber bearing plate 55 4.3 Conclusion for the influence of different damping ratio under the conditions of LRB and rubber bearing plate 57 CHAPTER 5. COMPARISON OF THE DISPLACEMENT WITH BEAM ELEMENT AND BEARING PLATE 74 5.1 Bridge model of beam finite element established 74 5.2 Bridge structure of beam finite element analysis 74 5.3 Analysis results in the frequency domain 78 5.3.1 Program MMM1 78 5.3.2 Discussion 79 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 98 6.1 Conclusions 98 6.2 Future works 99 REFERENCES 100

    1. Tsunehiko Saito, ”Stress analysis of concrete track slab on an elastic
    foundation by the finite element method”, Quarterly Reports of Railway
    Technical Research Institute, 4, p15, 1974.
    2. 陳聖杰,分析高速列車通過版式軌道引發的振動,國立成功大學土木工程研究所碩士
    論文,民國89 年。
    3. 曾俊維,以三維有限元素分析軌道結構之動力行為,國立成功大學土木工程研究所碩
    士論文,民國90 年。
    4. Garr. Gary A, Greif. Robert, “Vertical dynamic response of railroad track
    induced by high speed trains”, Proceedings of the IEEE/ASME Joint Railroad
    Conference,p135-152, 2000
    5. Yau JD, Yang YB, Kuo SR, “Impact response of high speed rail bridges and
    riding comfort of cars”, Engineering Structures, 21(9): p836-844 1999.
    6. Yang YB, Yau JD, Hsu LC, “Vibration of beams due to trains moving at high
    speeds”, Engineering Structures, 19(11): p936-944 1997.
    7. Li JZ, Su MB, “The resonant vibration for a simply supported girder bridge
    under high-speed train”, Journal of Sound and Vibration, 224(5): p897-915
    1999.
    8. Ju SH, Lin HT, “Numerical investigation of a steel arch bridge and
    interaction with high-speed train”, Engineering Structures, 25(2): p241-250
    2003
    9. 唐治平、吳俊岳,地震作用下停放列車之高速鐵路軌道橋梁互制研究結構工程,第三期
    ,39-52 頁,民國89 年
    10. 林宏達、朱聖浩,高速鐵路車橋共振問題之研究,南部科學園區振動防治策略研討會,
    民國90 年
    11. S.H. Ju, “Evaluating foundation mass, damping and stiffness by least-squares
    method”, Accepted by Earthquake Engineering and structural Dynamics.
    12. S.H. Ju, “3D finite element analyses of wave barriers for reduction of
    train-induced vibrations”, Accepted by Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, 2002.
    13. Higdon RL, “Absorbing boundary conditions for acoustic and elastic waves in
    stratified media”, Journal of Computational Physics, 101, p386-418, 1992.
    14. H. Xia, Y. L. Xu and T. H. T. Chan, “Dynamic interaction of long suspension
    bridges with running trains”, Journal of Sound and Vibration 237(2):
    p263-280,2000.
    15. S.H. Ju, Y.M. Wang, “Time-dependent absorbing boundary conditions for
    elastic wave propagation”, International Journal for Numerical Method in
    Engineering,50, p2159-2174, 2001.
    16. Ekevid T, Wiberg NE, “Wave propagation related to high-speed train – A
    scaled boundary FE-approach for unbounded domains”, Computer Methods in
    Applied Mechanics and Engineering, 191(36): p3947-3964 2002.
    17. Kattis SE, Polyzos D, Beskos DE, “Vibration isolation by a row of piles
    using a 3-d freqency domain BEM”, International Journal for Numerical
    Methods in Engineering, 46, p713-728, 1999.
    18. Kattis SE, Polyzos D, Beskos DE, “Modelling of piles wave barriers by
    effective trendches and their screening effectiveness”, Soil Dynamics and
    Earthquake Engineering, 18, p1-10, 1999.
    19. Klein R, Antes H, LeHouedec D, “Efficient 3D modeling of vibration isolation
    by open trenches”, Computers & Structures, 64, p809-817, 1997.
    20. Guo. Weiwei (School of Civil Engineering, Northern Jiaotong University); Xia.
    He; Zhang. Nan, “Dynamic responses of Wuhan Tianxingzhou long suspension
    bridge scheme under running trains”, Process in Safety Science and
    Technology Part A, v3, p 319-324, 2002.
    21. 黃俊霖,高速鐵路對土壤振動之有限元素分析,國立成功大學土木工程研究所碩士論
    文,民國88 年。
    22. Ju S.H. and Horng T.L. “Behaviors of a single crack in multiple bolted
    joints.”International Journal of Solids and Structures, 36, p4055-4070,
    1999.
    23. Biggs J.M. Introduction to Structural Dynamics. McGraw-Hill, Inc., New York,
    1964.
    24. Yang Y.B. and Yau J.D. (1997). “Vechicle-bridge interaction element for
    dynamic analysis.” Journal of Structural Engineering, 123, p1512-1518, 1997.
    25. Gordon CG, Generic criteria for vibration sensitive equipment. SPIE 1619,
    p71-75,1991.
    26. 高雄都會區大眾捷運系統岡山路竹延伸線對路竹科園之振動影響評估工作計畫書
    27. E.L. Wilson, R.L. Taylor, W.P. Doherty, and J. Ghaboussi, “Incompatible
    Displacement Models”, in Numerical and Computer Method in Structural
    Mechanics (Fenves, S.J., Perrone, N., Robinson, A.R. and Schnobrich, W.C.
    eds),Academic ress, New York, p43-57, 1973.
    28. S.H. Ju, 剛性聯結及介面元素應用於關結應力分折之研究, 國科會報告,
    (NSC-84-2213-E-006-119), 1995.
    29. http://www.hmmh.com/
    30. www.taneeb.gov.tw/14/140102.htm
    31. 張國偉,捷運系統高架橋行車振動分析,國立成功大學土木工程研究所碩士論文,民國90 年。

    下載圖示 校內:立即公開
    校外:2003-07-11公開
    QR CODE